

THE MASSACHUSETTS TOXICS USE REDUCTION INSTITUTE

MEASURING PROGRESS IN TOXICS USE REDUCTION AND POLLUTION PREVENTION

Massachusetts Toxics Use Reduction Program

Technical Report No. 30

1996

Measuring Progress in Toxics Use Reduction and Pollution Prevention

prepared by

The Massachusetts Toxics Use Reduction Program

authored by
Elizabeth Harriman and Maureen Hart
The Massachusetts Toxics Use Reduction Institute
at University of Massachusetts Lowell

in conjunction with
The Massachusetts Office of Technical Assistance
for Toxics Use Reduction
and
The Massachusetts Department of Environmental Protection
Toxics Use Reduction Program

supported in part by a grant from US EPA Pollution Prevention Incentives for States

The Toxics Use Reduction Institute University of Massachusetts Lowell

1996

All rights to this report belong to the Toxics Use Reduction Institute. The material may be duplicated with permission by contacting the Institute.

The Toxics Use Reduction Institute is a multi-disciplinary research, education, and policy center established by the Massachusetts Toxics Use Reduction Act of 1989. The Institute sponsors and conducts research, organizes education and training programs, and provides technical support to promote the reduction in the use of toxic chemicals or the generation of toxic chemical byproducts in industry and commerce. Further information can be obtained by writing the Toxics Use Reduction Institute, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854.

[©]Toxics Use Reduction Institute, University of Massachusetts Lowell

ACKNOWLEDGEMENTS

This success of this project was due to the combined effort of the PPIS Measuring Progress project team. The team members were: Jennifer Hunt and Tim Greiner with the Massachusetts Office of Technical Assistance, Suzie Peck and Karen Levy with the Massachusetts Department of Environmental Protection - TURA Program, and Elizabeth Harriman and Maureen Hart with the Massachusetts Toxics Use Reduction Institute. Maureen Hart and Elizabeth Harriman were the principal authors and editors of this report. Tim Greiner and Jennifer Hunt authored Chapter 5, and Suzie Peck and Karen Levy were the principal authors of Chapter 6. All team members provided invaluable input to many aspects of the project.

The project team appreciates the valuable assistance received from the TURA Program Evaluation Steering Committee, represented by Monica Becker of the Toxics Use Reduction Institute, and the Program Evaluation Consultation Group. We also thank those who took the time to review the draft of the report and provide comments, including Barbara Kelley of the Office of Technical Assistance, and Ken Geiser and Mike Ellenbecker of the Toxics Use Reduction Institute. Their input significantly improved the final report.

TABLE OF CONTENTS

E	XECUTIVE SUMMARY	viii
1	INTRODUCTION	1-1
	1.1 Introduction	
	1.2 Project Objectives	
	1.3 TURA Program Evaluation	
	1.4 Organization of this Report	
2	BACKGROUND	2-1
_	2.1 Massachusetts Toxics Use Reduction Act	2-1
	2.2 EPCRA, TRI and the Federal Pollution Prevention Act	
	2.3 Description of Previous Measurement Work	
3	METHODOLOGY - DATA OVERVIEW	3_1
-	3.1 Introduction	
	3.2 Data Availability	
	3.3 Data Useability	
	3.4 Data Overview Summary	
4	DATA CONSISTENCY CHECK	4_1
•	4.1 Introduction	
	4.2 Methodology for Identifying Data Issues	
	4.3 Problems Identified	
	4.4 Impact on Measurement of TUR Progress	
5	FACILITY REALITY CHECK	5 1
J	5.1 Introduction	
	5.2 Findings	
6	ESTADI ISHINIC A 1097 DASELINE	<i>c</i> 1
U	ESTABLISHING A 1987 BASELINE	
	6.1 Objectives and Overview	
	6.2 Sources of Information	
	6.3 Methodology for Developing Baseline Data	0-4
	6.4 Development and Results of Pilot Survey	. 0-0
	6.5 Plan and Schedule for Full Survey and Analysis	0-/
7	METHODOLOGY OVERVIEW	7-1
	7.1 Introduction	
	7.2 Development of Measurement Methodology	. 7-2

8 DATA ANALYSIS RESULTS	8-1
8.1 Introduction	8-2
8.2 Universes of TURA Data	8-2
8.3 Normalization	
8.4 Overall Progress - Actual and Normalized	
8.5 Progress of Selected Facility Universes	
8.6 Further Analysis of TUR Progress	
8.7 Summary	
9 CONCLUSIONS AND RECOMMENDATION	9 - 1
9.1 Conclusions	
9.2 Recommendations	
9.3 Summary	
BIBLIOGRAPHY	B-1

APPENDICES

- A. TURA Form S
 - A1 TURA Form S Data Diagram
 - A2 Form S
 - A3 Reporting Package Instructions
- B. TURA Chemicals
 - B1 All Chemicals Reported by Year Reporting First Required
 - B2 Methodology Chemical Groups
 - B3 Full TURA Chemical List
- C. SIC Code User Segment Groups
- D. TRI Form R
 - D1 TRI Form R Data Diagram
 - D2 Form R
 - D3 Production Ratio/Activity Index
- E. Previous Measuring Progress Studies
 - E1 Tufts University Capstone Report
 - E2 Tellus Institute Study
- F. Examples of TURA Data Structure Issues
- G. 1987 Baseline
 - G1 1987 Baseline Information Survey
 - G2 Pilot Results
- H. TURA Data Issues
- I. TURA Data Analysis Universes
- J. TURA Data Analysis Results
 - J1 Paradox™ Summary Reports
 - J2 Universe Percentages
 - J3 Chemical Category Analysis
 - J4 Industry Segment Analysis
- K. Recommendations for Modifications to Form S Reporting

LIST OF FIGURES

Figure 3-1	Measuring Progress 1987 - 1997: Data Availability	3-12
Figure 5-1	Research Questions	5-4
Figure 7-1	Reportable Universes	7-11
Figure 7-2	Year to Year Progress	7-12
Figure 8-1	All TURA Including Trade Secret	8-3
Figure 8-2	Measuring Progress 1987-1997: Data Availability	8-4
Figure 8-3	Relationships Between Specific Universes	8-8
Figure 8-4	1990 to 1993 Reportables - Changes in Byproduct	8-9
Figure 8-5	1990 to 1993 Reportables - Changes in Total Use	8-10
Figure 8-6	1990 to 1993 Reportables - Changes in Releases and Transfers	8-10
	1990 Reportables - Universe 0	
Figure 8-8	Progress for 1990-1992 Reportables: Key to Figures 8-9 to 8-15	8-17
Figure 8-9	Progress for 1990-1992 Reportables: Actual & Normalized Byproduct	8-18
Figure 8-10	Progress for 1990-1992 Reportables: Actual & Normalized Total Use	8-19
Figure 8-11	Progress for 1990-1992 Reportables: Actual & Normalized Shipped	8-20
Figure 8-12	Progress for 1990-1992 Reportables: Actual & Normalized Releases&Transfers	
• •		8-21
Figure 8-13	Progress for 1990-1992 Reportables: Actual & Normalized POTW Transfers .	8-22
Figure 8-14	Progress for 1990-1992 Reportables: Actual & Normalized Off-site Transfers	
Figure 8-15	Progress for 1990-1992 Reportables: Actual & Normalized Releases	8-24
Figure 8-16	Progress Year-to-Year: Key to Figures 8-16 to 8-18	8-26
Figure 8-17	Progress Year-to-Year: Actual & Normalized Byproduct	8-27
Figure 8-18	Progress Year-to-Year: Actual & Normalized Total Use	8-28
Figure 8-19	Progress Year-to-Year: Actual & Normalized Releases & Transfers	8-29
Figure 8-20	Facilities Contribution to 1990 TURA Data	8-30
Figure 8-21	Top 20 vs Non-Top 20: Actual & Normalized Byproduct	8-32
Figure 8-22	Top 20 vs Non-Top 20: Actual & Normalized Total Use	8-32
Figure 8-23	Top 20 vs Non-Top 20: Actual & Normalized Shipped	8-33
Figure 8-24	Universes 0, 3, and 4: Byproduct Reported	8-34
Figure 8-25	Universes 0, 3, and 4: Total Use Reported	8-35
Figure 8-26	Universes 0, 3, and 4: Percent Actual Reductions	8-35
	1990 Reported Total Use by Use Type	
Figure 8-28	Trade Secret and Non-Trade Secret Use Amounts	8-39
	Chemical Groups Amount Reported	

LIST OF TABLES

Table 4-1 Chemicals Reported in Some Years but Claimed Trade Secret in Other Years	4-6
Table 4-2 Impact of Data Issues and Incomplete Production Units	4-12
Table 5-1 Demographics of Firms Selected for Reality Check	5-3
Table 5-2 Case Study Firm TUR Accomplishments	
Table 5-3 Best Practice Use Tracking	
Table 5-4 Byproduct Tracking Best Practices	5-10
Table 5-5 Case Study Production Unit Definitions	
Table 5-6 Case Study Firm BRI Confidence	5-15
Table 5-7 Paper Manufacturer IRI Chart	
Table 5-8 Firm Reporting Errors 1990-1993	5-18
Table 5-9 Sample of Errors	
Table 5-10 DEP Data Entry Errors 1990-1993	5-19
Table 5-11 Sample DEP Data Entry Issues	
Table 6-1 Recycled and CERCLA Chemical Lists for 1987 Survey	6-6
Table 7-1 Normalized Quantity Change Example	
Table 8-1 Total Chemical Amounts Reported for All TURA	8-5
Table 8-2 Total Chemical Amounts Reported for 1990 Reportables	
Table 8-3 Weighted Average Production Ratios	8-14
Table 8-4 Top 20 and Non-Top 20 Weighted Average Production Ratios	8-31
Table 8-5 Actual and Normalized Progress for TURA 1990 Reportables	8-42
Table 8-6 Actual and Normalized Progress for Selected Universes	8-43

LIST OF ACRONYMS

AIM TUM Associated Industries of Massachusetts Toxics Use Management Committee

BRI Byproduct Reduction Index

CAS Chemical Abstracts Service registry number

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act of 1980

DEP Commonwealth of Massachusetts Department of Environmental Protection

EPCRA Emergency Planning and Community Right-To-Know Act of 1986

ERI Emission Reduction Index

FMF DEP Facility Master File database

FTE Full Time Employee

GAO Government Accounting Office

IDEM Indiana Department of Environmental Management

IRI Input Reduction Index
LOTU Large Quantity Toxic User

MA Massachusetts

MEK Methyl Ethyl Ketone

MGL Massachusetts General Law MSDS Material Safety Data Sheet

OTA Massachusetts Office of Technical Assistance for Toxics Use Reduction

POTW Publicly Owned Treatment Works

PPIS Pollution Prevention Incentives for States

PR Production Ratio

PR_{wA} Weighted Average Production Ratio

PU Production Unit

QA/QC Quality Assurance/Quality Control

RCRA The Resource Conservation and Recovery Act

SIC Standard Industrial Classification

TRI Toxics Release Inventory
TUR Toxics Use Reduction
TURA Toxics Use Reduction Act

TURI Massachusetts Toxics Use Reduction Institute

UOP Unit of Product

US EPA United States Environmental Protection Agency

VOC Volatile Organic Compound

EXECUTIVE SUMMARY

Under the Massachusetts Toxics Use Reduction Act (TURA) industrial facilities have been reporting on their use of toxic chemicals and generation of hazardous byproduct (wastes) since 1990. This study was designed to develop and test a methodology for measuring toxics use reduction (TUR) progress in the Commonwealth and to apply this methodology to the collected data. Results indicate that progress is being made in reducing toxic chemical use and the generation of toxic byproducts.

Purpose of this Study

In Massachusetts the state pollution prevention program is called the Toxics Use Reduction Program (TURA). Under TURA roughly 600 industrial facilities must report annually on toxic chemicals used and toxic byproducts generated at the facility. Each year as facility managers prepare to report toxic chemicals released to the environment or transferred off-site under the federal Toxics Release Inventory (TRI) they must also report on the use of those chemicals under the state TURA program.

The state TURA law is implemented by a partnership between four state agencies: the Administrative Council on Toxics Use Reduction, the state Department of Environmental Protection (DEP), the Office of Technical Assistance (OTA), and the Toxics Use Reduction Institute (TURI) at the University of Massachusetts Lowell. Over the past several years of implementation the agencies have raised many questions about whether Massachusetts companies are making progress in toxics use reduction. This study was designed to use available data to answer those questions. The methodology was developed using the state TURA data and data from the federal TRI.

This data measurement project is part of a larger effort being conducted by the four state agencies to evaluate the success of the TURA program in Massachusetts. One specific section of the state law sets a statewide goal of 50% reduction in toxic waste (byproduct) generation by 1997 through toxics use reduction. The baseline for this metric is 1987. This study establishes a basis for evaluating progress towards meeting that goal.

Results of the Data Analysis

The results of the study indicate that Massachusetts industries made progress in toxics use reduction between 1990 and 1993. The study reached this conclusion by developing a methodology which uses the TURA and TRI data to calculate multiple metrics of progress. The

principle metrics include: both actual and production-normalized changes in quantities of toxic chemicals used, generated as byproduct, shipped in or as product, released to the environment and transferred off-site. Production-normalized metrics indicate whether observed changes are due to changes in a firm's level of production, or to the firm's TUR efforts. The production ratio or activity index reported under TRI was used as an indicator of the production level.

In order to account for changes in reporting requirements over the 1990 to 1993 period, the TURA data were evaluated in separate "universes" of consistently reportable industries and chemicals. At this point, the largest consistent universe is the "1990 Reportables." This consists of chemicals and industrial sectors (manufacturing SIC codes) reportable under the TRI in 1990. From 1990 to 1993, the following changes occurred in this 1990 Reportable universe:

- There was a 17% actual reduction and 19% normalized reduction in total use of toxic chemicals reported under TURA
- There was a 13% actual reduction and 14% normalized reduction in total byproduct generated reported under TURA
- There was a 5% actual increase and 3% normalized increase in total amount of toxic chemicals shipped in or as product reported under TURA.
- There was a 4% actual reduction and 8% normalized reduction in total toxic chemical releases and transfers reported under the TRI (Releases to the environment and transfers to sewer systems--POTW's--decreased while off-site transfers increased)

For all 1990 Reportables, the effect of normalizing for changes in production was nominal because production first decreased, then leveled off, and then increased, for a small net increase over the three year period.

Confidence in the Data Analysis

In order to establish confidence in the results of any measurement methodology, it is necessary to determine the quality of the data used. Two key components of the study addressed this issue: 1) a facility "reality check," and 2) improvement in the quality and useability of the TURA data.

The facility "reality check" was done to determine whether the TURA data being reported by companies accurately reflected toxics use reduction activities at the facilities. An in-depth investigation of several facilities in Massachusetts was performed to determine 1) confidence in reported data, 2) "best practices" for materials accounting, and 3) the effect of facility reporting problems on the measurement of progress at the state-wide level.

Results of the "reality check" indicated that facilities which used "best practices" in materials accounting had significantly more confidence in their data. While 10 of the 11 case study firms said that they had done TUR, many had low confidence in their Byproduct Reduction Index (BRI), an indicator used under TURA to assess byproduct changes against a base year.

Characteristics of "high confidence" BRI's included production units using "best practices" materials accounting, and continuous processes. Conversely, "low confidence" BRI's were characterized by production units with batch processes, difficulty selecting a correlated unit of product, small quantities of byproduct, and poor base year data.

Since the first TURA data became available, the state DEP has been working to create a high-quality database that is readily accessible to the public. This is a complex undertaking, and has required continuous improvement in data management techniques. Significant work was done under this project to identify obvious reporting and entry errors, and to identify changes to the data management system which would improve the useability of the data, particularly at the production unit level. When improvements are complete, the result will be a powerful database of information about toxics use and byproduct generation in Massachusetts, which will allow users to determine to what extent and where changes are occurring.

A thorough review of this study indicates the value of a systematic toxic chemical use and release data base for tracking pollution prevention progress. As state agencies and firms further develop their capacities to collect, analyze and use this data, the Commonwealth can, with increasing confidence, claim that pollution prevention is working in Massachusetts.

1 INTRODUCTION

1.1 Introduction

The Massachusetts Toxics Use Reduction Act (TURA) was passed in 1989 with the objective of reducing toxic chemical use and byproduct generation in the Commonwealth. The Act requires that large quantity toxics users report to the state annually on their use of toxic chemicals and byproduct generation, and that they prepare a toxics use reduction/pollution prevention plan for their facility. This study uses the data reported by facilities to determine whether Massachusetts industries are making progress in toxics use reduction.

This study was a cooperative effort by the three main TURA implementing agencies: the Toxics Use Reduction Institute (TURI), the Department of Environmental Protection (DEP) and the Office of Technical Assistance for Toxics Use Reduction (OTA). TURI is a research, policy and education center established by the Act and located at the University of Massachusetts Lowell. The DEP's Bureau of Waste Prevention oversees the gathering of data, promulgates regulations, and coordinates the Department's activities to ensure a multi-media approach. OTA provides free consultation and advice to firms seeking assistance in implementing toxics use reduction programs.

Many questions have been raised about whether Massachusetts companies are making progress in toxics use reduction. Numerous case studies describe significant chemical use and waste reduction at individual facilities. Are these facilities representative of others in their industry? The Federal Toxics Release Inventory (TRI) data has indicated a reduction in combined releases to the environment and transfers off-site. Are these reductions due to more efficient chemical use or more on-site, end-of-pipe treatment? Has TURA been effective in assisting companies to evaluate and reduce their input and output of toxic chemicals? This project is designed to answer these and many other questions about progress in Massachusetts.

The objective of this study has been to produce a tested methodology for using the Massachusetts TURA and federal Toxics Release Inventory (TRI) data for measuring state-wide progress in toxics use reduction (TUR) and pollution prevention. While TUR progress is the focus of this report and will be the terminology used throughout, it should be noted that TUR is merely a strict interpretation of pollution prevention. The TURA "byproduct" quantities referred to in the report are equivalent to waste generation prior to treatment or out-of-process recycling.

The methodology was designed to provide a broad vision of progress in the Commonwealth, as well as to respond to the goals of TURA. To provide the broad vision, the methodology will use

¹ TUR is restricted to TURA listed toxic chemicals, and includes only in-process pollution prevention activities. Thus, out-of-process (anything not hard-piped and integral to the process) recycling and waste treatment are not TUR.

multiple metrics based on toxic chemical byproduct, use, shipped in or as product, released to the environment, and transferred off-site quantities. Some of these metrics will also address specific goals of the Act. While TURA has several general policy goals, it states one numeric goal: to achieve by 1997, through toxics use reduction, a fifty percent (50%) reduction from 1987 quantities of toxic byproducts generated by industry.

1.2 Project Objectives

This project consists of five major objectives:

1) Improve the quality and useability of the TURA data.

Since the first TURA data became available, DEP has been working to create a high-quality database that is readily accessible to the public. After the first releases of the "extract files" (ASCII text files downloaded from DEP's main database system), DEP became aware of numerous issues around the accuracy and useability of the data. Accuracy issues focused particularly on 1990 data and production unit-level fields. Useability issues included problems with the extract procedure and how the data were stored in the extract files. A key objective of this project was to identify and correct as many of these issues as possible.

2) Define a methodology for measuring TUR progress using available data.

There is no established methodology for measuring pollution prevention or toxics use reduction progress. Thus, a key objective of this project was to develop a methodology using available TURA, TRI and any other applicable data.

3) Test the methodology using available data.

The proposed methodology was applied to 1990 through 1993 data in order to test the usefulness of the methodology as well as to provide an indication of TUR progress in Massachusetts.

4) Define a methodology for establishing a 1987 baseline.

TURA's 50% byproduct reduction goal establishes 1987 as the baseline from which to measure progress. This was chosen in order to include the reductions already achieved by firms prior to the passage of TURA. However, TURA reporting was not required until 1990. 1987 TRI data do not provide byproduct quantities and not all TURA industries and chemicals were required to file under TRI in 1987. Therefore, a methodology was needed to estimate the 1987 baseline quantities. It was originally planned to complete the 1987 baseline work as part of this project. However, it was decided that in order to create a statistically meaningful baseline, this portion of the project would take longer than expected. A methodology, a pilot survey and the first phase of the full survey have been completed to date. The full results are expected in April 1996.

5) Conduct a "reality check" to evaluate the validity of the reported data.

The project team felt that it was critical to determine whether the TURA data being reported by companies accurately reflected toxics use reduction activities at their facilities. A measurement methodology can only be as good as its data source. An in-depth investigation of several facilities in Massachusetts was performed to determine 1) confidence in reported data, 2) "best practices" for chemical tracking, and 3) the effect of facility reporting problems on the measurement of progress at the state-wide level.

While the three agency project team worked together to frame and carry out the work, each agency had different roles and responsibilities. TURI was responsible for overall coordination of the project and the final report. DEP and TURI shared responsibility for data quality work, TURI took the lead on the methodology and data analysis, DEP initiated the 1987 baseline work, and OTA was responsible for the "reality check" portion of the project.

1.3 TURA Program Evaluation :

This project is not an isolated data analysis activity. Although it began almost a year earlier, it is the cornerstone of the TURA Program Evaluation effort begun in the summer of 1995. This larger effort aims to measure progress toward all the goals of the Act, including the numerical goal, and to assess the program's effectiveness in implementing and promoting TUR. This project has benefited from the perspective brought by the larger evaluation, particularly in terms of how to establish a 1987 baseline for measuring progress.

The results of this study should be viewed as the first step in refining a measurement methodology. We hope to receive feedback on the methodology and the results presented here from all stakeholders. This will be incorporated into the next run of the methodology in mid-1996 using both the newly available 1994 data, as well as further improved 1990 data. At that time, the 1987 baseline will also be available so that progress can be estimated from 1987 to 1994.

1.4 Organization of this Report

This report begins by setting the context for this project, both in terms of TURA's objectives and provisions and in terms of previous work on measuring pollution prevention and TUR progress. The overall project methodology is presented, followed by results for each component of the study. The report ends with conclusions drawn from the work and recommendations. The report is divided into the following sections:

Chapter 2 provides background information on the Massachusetts Toxics Use Reduction
Act and related federal legislation as well as a brief review of previous pollution
prevention measurement projects.

- Chapter 3 describes the data available for measuring progress and explains some of the issues involved in using the data to develop an accurate measure.
- Chapter 4 describes the process used to identify issues related to the TURA and TRI data, progress in resolving those issues, and a schedule for continuing to improve the data and the data management system.
- Chapter 5 describes the results of the "Reality Check" analysis of TURA facility reporting efforts and the effect on the methodology of reporting problems.
- Chapter 6 describes the process and progress to date in establishing baseline TURA data for the year 1987.
- Chapter 7 describes the methodology developed using TRI and TURA data to measure toxics use reduction progress.
- Chapter 8 presents the results of the methodology using the currently available TURA data.
- Chapter 9 provides conclusions and recommendations for improving the TUR
 measurement methodology, the underlying data, and the practices used by the facilities to
 report the data.

2 BACKGROUND

KEY POINTS

- The Massachusetts Toxics Use Reduction Act (TURA) reporting requirements are similar to the federal reporting requirements under EPCRA, although TURA includes more industries and chemicals and, in some cases, has a lower reporting threshold.
- TURA requires facilities to report on the use of toxic chemicals and the generation of toxic byproducts. Facilities are also required to report some information at the production unit level.
- One of the goals of TURA is to achieve by 1997, through toxics use reduction, a 50% reduction from 1987 quantities of toxic byproducts generated by industry.
- Reporting under TURA began in 1990 so data are not directly available for 1987.
- Changes in chemical use and byproduct generation are affected by changes in production level as well as by toxics use reduction activities.
- Previous projects have developed and, in some cases, applied methodologies for measuring
 pollution prevention and TUR progress. Methodologies include qualitative and quantitative
 metrics. Methods which normalize reported quantities to account for changes in
 production levels have suggested the use of employment, value-added manufacture and TRI
 production ratio data as indicators of production.

2.1 Massachusetts Toxics Use Reduction Act

In 1989, Massachusetts passed the Toxics Use Reduction Act (TURA), which is a toxics use reduction¹ (TUR) planning and reporting law. The data on toxic chemical use and byproduct generation collected under TURA supplements waste and release information submitted under the federal Toxics Release Inventory (TRI) program. Byproduct is defined in TURA as "all non-product outputs of toxic or hazardous substances generated by a production unit, prior to handling, transfer, treatment, or release." (MGL Ch21I) Thus, byproduct includes not only waste material which leaves the facility boundaries, but also any material that is recycled, reused or reprocessed on-site, but outside the production process in which it is generated. Massachusetts has been collecting data under TURA since 1990.

¹TURA defines toxics use reduction as "In-plant changes in production processes or raw materials that reduce, avoid, or eliminate the use of toxic or hazardous substances or generation of hazardous byproducts per unit of product, so as to reduce risks to the health of workers, consumers, or the environment without shifting risks between workers, consumers or parts of the environment." (MGL Ch 211) See Appendix A3.

2.1.1 TURA Goals and Provisions

The key actions required by the Act are reporting and planning. Firms which qualify as a "Large Quantity Toxics User" (LQTU) must report annually to DEP on their use of toxics and generation of toxic byproducts, as described in section 2.1.2. Those same firms must establish a facility TUR team which prepares a TUR plan. The team evaluates the facility for toxics use and byproduct generation, identifies TUR options, and evaluates those options based on technical and economic feasibility as well as environmental, health, and safety impacts. TURA does not require a facility to implement any TUR options or to achieve any specific reduction goals; it only requires a facility to plan.

TURA has one numerical goal for reduction of toxic chemical byproduct generation:

"..to achieve by 1997, through toxics use reduction, a fifty percent (50%) reduction from 1987 quantities of toxic or hazardous byproducts generated by industry in the Commonwealth of Massachusetts." (MGL Ch.21*I* §13(A))

While the 50% goal is clear, there are differing opinions about exactly how to measure progress toward the goal. One interpretation is that there should be a 50% reduction in the quantity of toxic chemical byproducts generated in Massachusetts, regardless of the cause of reduction. Another interpretation is that the reduction must be achieved through toxics use reduction techniques, not through other causes, such as changes in production levels. In addition, a policy goal of the Act² (Massachusetts Laws of 1989, Ch. 265 §1), is "to promote reductions in the production and use of toxic and hazardous substances within the Commonwealth" [italics added]. Each of these interpretations requires a different metric for determining progress. This report considers metrics that address each of these goals and interpretations, as well as metrics which help to understand the reasons behind the overall trends which are observed.

2.1.2 TURA Reporting Requirements

Facilities are required to report under TURA if they:

- have ten or more full time employees.
- are included in Standard Industrial Classification (SIC) codes 20-39 (beginning with 1990 reporting year) or 10-14, 40, 44-51, 72-73 or 75-76 (beginning with 1991 reporting year), and

²The "Act" (Massachusetts Laws of 1989, Ch. 265) is the law that was passed making TURA part of the Massachusetts General Law (Chapter 21*I*). The "Act" consists of: the policy goals of the Act, the section which inserts TURA as MGL Ch. 21*I*, and other sections which insert supporting paragraphs into other parts of MGL.

 manufacture or process 25,000 pounds or more per year or otherwise use 10,000 pounds or more per year of a TURA listed chemical (if a facility trips the threshold for one chemical, it must report on all chemicals used in excess of 10,000 pounds per year).

Chemicals covered under TURA for the 1990 reporting year are identical to those on the EPCRA³ or Toxics Release Inventory (TRI) list for 1990. The list of chemicals expanded from 1991 through 1993 by the phasing in of chemicals regulated under CERCLA⁴. One third of the 731 CERCLA chemicals were added each year from 1990 to 1993, although many were already included in the EPCRA list (see Appendix B). While the EPCRA list formed the basis for the TURA list, TURA does not automatically-delist a chemical delisted by EPCRA.

The reporting requirements include submitting a Form S, a Form S Coversheet, and a federal Form R. These must be submitted for each of the reportable chemicals described above. The information required on the Massachusetts forms is outlined below. The information required on the federal Form R is outlined in section 2.2. Appendix A contains detailed information on the TURA Form S and reporting requirements.

On the Form S and Coversheet, firms are required to provide information both at the facility level and at the production unit level for each listed chemical. At the facility level, firms are required to report total pounds of each listed chemical manufactured, processed, otherwise used, generated as byproduct, and shipped in product.

At the production unit level, firms must provide the following information:

- a description of the production unit and product,
- the SIC code(s) relating to that production unit,
- the quantity of chemical used, expressed as a range and entered as a code,
- a byproduct reduction index (BRI),
- an emission reduction index (ERI), and
- codes describing the TUR techniques used during the reporting year.

The BRI is of particular interest to this study. The BRI is a measure of the reduction in chemical byproduct generation per unit of product, in the current year relative to a base year. Thus, the BRI factors out changes in byproduct due to changes in production levels. It is, therefore, a measure of toxics use reduction. The ERI is a similar index for emissions reduction, also normalized for production. It should be noted that when a chemical is used in more than one production unit, separate BRIs and ERIs are reported for each production unit while the total chemical quantities are reported for the entire facility, not for separate production units. As a result, it is not possible to apportion any reported chemical quantities (use, byproduct, shipped in

³ Emergency Planning and Community Right to Know Act of 1986

⁴ Comprehensive Environmental Response, Compensation, and Liability Act of 1980

product, or TRI releases and transfers) to any production unit. Nor is it possible to determine an overall byproduct reduction index for the total amount of a chemical used by a facility. This "data gap" caused by reporting quantities only at the facility level is an intentional gap requested by industry to protect business information and is specified in the TURA legislation.

More detailed information about the TURA data elements is included in Appendix A. In addition, later discussions of data availability and useability in Sections 3.2 and 3.3 provide an in-depth look at the TURA Form S data.

Facilities are also required to submit a summary of the TUR team plan to reduce the use of toxics and generation of toxic byproducts. Firms were first required to prepare plans in 1993 and submit the corresponding plan summaries to DEP in July 1994. The plan summaries include projections of future toxic use and byproduct generation, based on anticipated TUR activities and must be submitted biennially.

2.2 EPCRA, TRI and the Federal Pollution Prevention Act

The provisions of EPCRA mandated the US Environmental Protection Agency (EPA) to create a nationwide inventory on the release and transfer of toxic chemicals by industrial manufacturing facilities. The information is reported by facilities on the federal Form R and has been compiled into a database known as the Toxics Release Inventory (TRI). The largest users of toxic chemicals were first required to report in 1988 on 1987 releases and transfers. Smaller facilities were phased in over reporting years 1988 and 1989. Chemicals listed under EPCRA in 1990 include 302 chemicals and 20 categories of chemicals. This list is subject to revision as part of EPA's ongoing review process. The Pollution Prevention Act of 1990 expanded the TRI to include additional reporting on waste management and pollution prevention activities.

TRI Reporting criteria are the same as for TURA, with the following exceptions. For TRI:

- only manufacturing facilities in SIC codes 20-39 are covered,
- only the EPCRA list of chemicals is covered, and
- threshold amounts for reporting remain constant (i.e., manufactured or processed chemicals < 25,000 pounds per year are never reported).

Thus, a facility may have to file under TURA and not TRI, but the reverse is never true. If a facility has to file under TURA, they must submit a Form R to the Massachusetts DEP, even if they are not required to submit one to the EPA under TRI.

On the Form R, facilities report the quantities of listed chemicals released to the environment, transferred off-site, and both on- and off-site energy recovery, recycling, and treatment. The quantities are reported as facility level totals and are reported for the previous year, the current year and projected for one and two years in the future. Release and transfer data have been

reported since 1987. The source reduction and recycling (Section 8) elements were added for reporting year 1991. Theoretically, the sum of Section 8 quantities at any facility should equal TURA byproduct. In reality, there is a poor correlation between them (Tellus, 1995). One known discrepancy is when in-process recycling is reported as "on-site recycling" in TRI Section 8, but is not reported as TURA byproduct. Also, when a facility claims trade secret under TURA, no information is included in the TURA extract files about that chemical, whereas their release and transfer data are included in the TRI database. There also may be other types of differences in reporting which contribute to the poor correlation. That particular issue was not investigated during this study.

In addition to these quantities, companies report a production ratio (PR) or activity index for each chemical. The PR is a measure of the level of production in the reporting year compared to the production level in the previous year. Appendix D and Chapter 3 contain detailed information regarding TRI reporting.

2.3 Description of Previous Measurement Work

This section will provide a brief summary of the existing body of knowledge around measuring progress in pollution prevention and toxics use reduction. It will look only at those methodologies applicable to progress at the state or national level, as opposed to the facility level. The focus of each study and any significant and relevant conclusions are presented below. In some cases additional information is included in the appendices.

2.3.1 Pollution Prevention Measurement

A variety of work has been done by EPA and states to measure pollution prevention progress. It has ranged from the very qualitative (e.g., anecdotal information about cost savings and waste reduction) to quantitative, (e.g., data analysis of chemical release and transfer trends). A few of the more relevant projects will be described here.

2.3.1.1 EPA Measurement Project

Four states, Washington, Oregon, Alaska, and Ohio, are taking part in the EPA Measurement Project and are using TRI data in their projects to assess pollution prevention measurement. In some cases these data have been supplemented by state-mandated data, e.g., Oregon and Washington planning data, or by other federal databases such as RCRA Biennial Reporting System data.

Washington's data analysis methodology development consists of an assessment of both actual releases and normalized measures using production data (provided on state P2 plans), number of

employees, and total revenue. The main data sources include facility P2 plans, TRI and RCRA data.

2.3.1.2 Washington State Normalization Study

In 1991, Tellus Institute and others (Tellus Institute, et al, 1991) completed a study for the state of Washington which proposed a methodology for normalizing data to account for production level. The study evaluated available data sources and suggested using both employment and gross income as proxies for output-(production level).

A related finding of the study was the unreliability of 3- and 4-digit SIC codes. A test case using the paper industry found that the same facilities were categorized into different SIC codes by different state and federal agencies (US EPA, US Department of Commerce Census Bureau, Washington Department of Ecology, etc.). This variation in how SIC codes are interpreted makes it difficult to obtain comparable data from different sources for normalized industry analysis.

2.3.1.3 Indiana Report

In 1994, the Indiana Department of Environmental Management (IDEM) issued its First Annual Report on Pollution Prevention Progress (Indiana, 1994). Indiana's program consists of a non-regulatory, university-based institute and a regulatory office within IDEM. Their P2 legislation provided for technical assistance and training, but did not require additional reporting or planning by companies. Indiana's definition of P2 is similar to MA TURA, in that it is restricted to in-process activities. Their annual report established a quantitative measure of progress and evaluated their program activities and accomplishments.

The Indiana quantitative measure used the source reduction data from TRI Form R, submitted for reporting year 1991, which provides data for 1990 and 1991, as well as projected estimates for 1992 and 1993. They tracked "total generation," defined as all Section 8 quantities, and "total generation less on-site recycling," because they could not determine whether specific on-site recycling quantities were due to P2 or not. They also calculated a weighted average Production Ratio/Activity Index for 1990 to 1991, using it to calculate "adjusted" 1991 quantities.

Results indicated a reduction in "total generation" from 90 to 91 of 8-1/2%, despite an 8% increase in production levels. It was also noted that nearly one half of the 8-1/2% reduction (55 million pounds) was the result of reduced on-site recycling of sulfuric acid by one facility, caused by lower production rates. The estimated quantities for 1992 and 1993 showed no further significant reductions expected from 1991. While the study put forth a credible methodology using the TRI data, it was difficult to test it with only one year's reporting data available.

2.3.2 Toxics Use Reduction Measurement

Pollution prevention measurement efforts have varied in their definition of P2 and in their focus. In Massachusetts, P2 is defined specifically as TUR. In 1991, work began on developing measurement techniques that would take advantage of the data being collected under TURA and focus on the goals of TURA.

2.3.2.1 The Tufts Capstone Report - Measuring-Progress in Toxics Use Reduction

In 1991, the Massachusetts Department of Environmental Protection (DEP) commissioned a group of Tufts graduate students to prepare a study of the options available for measuring progress in toxics use reduction. (Harriman, et al, 1991) The group looked at the data that would be available from various sources and evaluated potential methodologies for measuring progress. The study was done just prior to the time that the first Form S reports were due (July 1991) and, therefore, before any data actually were available. Potential sources of data and existing methodologies were reviewed and evaluated.

The study, Measuring Progress in Toxics Use Reduction, concluded that the most meaningful results would be obtained by using multiple indicators of progress, including both actual quantity reductions and reductions normalized to account for changes in production. For normalized measures, the report recommended that additional information, a facility-wide BRI, be required on the TURA Form S. Given that a facility-wide BRI might not be available, the study recommended using employment, possibly adjusted for changes in worker productivity, or "value-added manufacture" as an indicator of state-wide production levels. Further research was suggested to study the effect of changes in worker productivity and the other confounding factors on the validity of employment as an indicator. It was noted that "value-added manufacture" data are available only every five years and with a two to three year lag time, and so are of limited usefulness. (See Appendix E)

2.3.2.2 The Tellus Report - Taking Stock: Measuring Toxics Use Reduction Progress in Massachusetts

In 1994, TURI contracted with Tellus Institute to do a measuring progress study as background work for the second chemical restrictions report (see next section). The objective of this study was to use previous work on measuring progress to tailor a methodology for measuring TUR progress in Massachusetts. The report, *Taking Stock: Measuring Toxics Use Reduction Progress in Massachusetts* (Tellus, 1995), provided an overview of previous work, determined which types of metrics were most applicable to the Massachusetts goals and data, and then tested the methodology on five industry sectors using 1990 to 1992 TURA data. This was the first attempt

to do an extensive analysis using the TURA data and much was learned from the experience. The findings relevant to this study are outlined below.

The study proposed a methodology consisting of the following metrics:

- 1) Qualitative Methods: Examine positive vs. negative BRI's and ERI's, explanation codes for chemicals previously reported but not reported in current year, TUR technique codes, and Form R source reduction activity codes.
- 2) Non-normalized Quantitative Methods: Calculate total use, byproduct, shipped in product, and TRI release, recycle and transfer quantities.
- 3) Normalized Quantitative Methods: Calculate quantities as in 2), but adjust for the level of production using state-wide employment and, when available in the future, value added data. Monthly employment data are available for Massachusetts at the 4-digit SIC code level. It was not recommended to adjust employment for changes in productivity, because these statistics are not considered to be highly reliable and are not available for all 4-digit SIC codes, nor for Massachusetts alone.

This methodology was then applied to five industry sectors. The following significant conclusions were drawn from the study (Tellus, 1995 and Shapiro and Harriman, 1995):

- Analysis of the TURA data at the 4-digit SIC level can be seriously affected by data errors or reporting anomalies at one or a few facilities.
- It is not possible to discern trends from only three years of data. (Only 1990 through 1992 were available at that time.)
- Qualitative data are useful primarily as supporting evidence for quantitative results. That is, they can support (or not support) observed trends in the data but do not reliably demonstrate trends themselves.
- Changes in reporting requirements under TURA must be accounted for to accurately assess progress.
- There are significant discrepancies between byproduct as reported under TURA and the sum of TRI quantities which are expected to equal TURA byproduct.
- The use of employment as a proxy for production was inconclusive, at best. Changes in employment for each SIC were small (1-7%) and did not always correlate with changes in number of facilities, chemicals or production units.

2.3.2.3 Chemical Restrictions II - The Massachusetts Experience with TUR

TURA required the Toxics Use Reduction Institute (TURI) to complete "a further study on the Massachusetts experience with this chapter [TURA] and how it relates to the issue of chemical restrictions." (MGL Ch.211) The report, Toxic Chemical Management in Massachusetts: The

Second Report on Further Chemical Restriction Policies, (Geiser and Rossi, 1995) was published in January of 1995. It examined the Commonwealth's experience, in part, by looking at industry's progress under the Act.

The report utilized the work done by Tellus and additional work by TURI to draw a preliminary picture of progress using 1990 through 1993 data. The objective was to ascertain whether progress was occurring under TURA and for which chemicals, groups of chemicals, and industries.

This preliminary look at state-wide progress showed a reduction in total chemical use of approximately 6% and a reduction in byproduct of 16%, utilizing a "refined" set of data. In addition, it was noted that trends in certain categories of chemicals, particularly ozone-depleting substances being phased-out under the Montreal Protocol, showed greater reductions than in others.

2.3.3 Summary of Previous Measurement Work

The methodology development for this study built on the previous work described in this section. Key findings which were incorporated into the methodology include the following:

- multiple metrics provide a more complete measure of progress
- further study is necessary around normalization methods based on BRI, employment or TRI production ratio
- changes in reporting requirements must be accounted for by creating consistent subsets of chemicals and industries
- data quality issues may seriously impact measurement of progress at industry or chemical level

3 METHODOLOGY - DATA OVERVIEW

KEY POINTS

- Various types of data are needed to effectively measure TUR progress. These include chemical quantities, as well as indicators of production, which will be used to normalize quantities for changes in level of production.
- Toxic chemical use, byproduct and shipped in product quantities provided under TURA are
 essential to a meaningful TUR measurement methodology. TURA quantities available for
 use in the methodology include quantity of toxic chemical manufactured, processed,
 otherwise used, generated as byproduct, and shipped in or as products.
- TRI data available for measuring progress include releases and transfers of toxic chemicals.
- Production data which could potentially be used for normalizing quantities include: industry
 employment, worker productivity, value-added manufacture, TRI production ratio and
 TURA BRI/ERI.
- Employment data was eliminated as a potential indicator because it does not appear to follow production levels well and because it can not be easily adjusted for changes in worker productivity. Value-added data were eliminated because of the lag time in their availability.
- The best available proxies for production levels were determined to be the TRI production ratio and unit of product information incorporated into facility BRI's.
- TURA reporting requirements were phased in over four years. This requires that the
 methodology accommodate a constantly changing universe of reportable chemicals and
 industries.
- In order to calculate progress from a 1987 baseline, data must be estimated and/or additional data must be collected from facilities for 1987 through the first year reporting was required.
- Data availability is also affected by facilities which drop below or rise above reporting thresholds.
- Toxic chemical quantities are reported at the facility level, while BRI's, ERI's, SIC codes, and other data are reported at the production unit level. While both facility-wide quantity data and production unit level information are useful individually for measuring progress, it is not possible to quantitatively link the two sets of data. This prevents the calculation of a facility- or state-wide aggregated BRI and limits the ability to calculate industry-wide measures of progress.

3.1 Introduction

The first step in developing a measurement methodology is to evaluate the potential data sources that are available. This chapter outlines the types of data required to measure TUR progress and evaluates their availability, useability, and overall quality. These evaluations build on the previous work described in Chapter 2, beginning with assumptions about what sources of information are likely to be applicable. The results of this evaluation will determine the most effective strategies for measuring progress.

3.1.1 Methodology Data Needs

The objective of the measurement methodology is to identify changes in toxic chemical use patterns, that is, changes in quantities of toxic chemical used, byproduct generated, shipped in product, released to the environment and transferred off-site. Toxic chemical quantities are available from Form S and Form R.

An additional objective is to measure changes in those quantities due to toxics use reduction, rather than changes in production. This requires a production "normalized" metric, i.e., one which accounts for changes in production level. Chemical quantities can be normalized by using either publicly available economic indicators, such as employment data, or data reported by facilities on the Form S or Form R. The following economic indicators were evaluated: employment data, alone or combined with worker productivity data, and value added data. Production data reported by specific facilities include the BRI and ERI from TURA Form S and the production ratio/activity index from TRI Form R.

In addition to these quantitative measures, qualitative metrics can be developed which provide an indication of whether TUR is occurring, but not necessarily an indication of how much TUR is occurring. Reported TUR or source reduction techniques used are examples of data elements which could be used to create qualitative metrics.

3.2 Data Availability

Methods for measuring TUR progress are limited primarily by the data that are available. This section evaluates ways in which the data availability affects the measurement methodology. Economic indicators for normalization are discussed first; this includes an examination of unresolved issues about whether those indicators are suitable proxies for production. An examination of the availability of TURA and TRI data follow. Key issues for TURA and TRI include the level at which data elements are reported and the years in which they were reportable.

3.2.1 Production Data For Normalized Measures

There are two ways to normalize TURA data, with data related to industry activity but not reported on the TURA or TRI forms and with TURA and TRI data reported by facilities on Forms S and R. Non-TURA economic indicators include: state employment data, industry productivity data, and value added by manufacture data. The following is an analysis of both the availability and suitability of each potential indicator for measuring TUR progress.

3.2.1.1 Employment and Productivity Data

Several studies have suggested that employment data could be used as a proxy for production level (Tellus Institute, 1991, Harriman, et al, 1991, Tellus Institute, 1995,). Harriman, et al suggested that total state-wide employment for the manufacturing sector, adjusted for productivity using national average output per manufacturing employee, could be used as a state-wide production indicator. Tellus proposed and tested the use of SIC level employment as a means to normalize SIC level trend analysis. The strength of employment information is its frequent and timely availability at several levels (state, SIC, etc) and its reliability as a data source. However, its weaknesses are many, due to several underlying assumptions. Use of employment as a proxy for production makes the following assumptions:

- 1) Employment at TURA reporting facilities parallels that at all facilities. Employment data include all facilities, whereas chemical data are only for large quantity toxics users (LQTUs) that trip the reporting thresholds.
- 2) Employment numbers respond quickly to changes in level of production. It is likely that in the short term employment is less cyclical than production output. If business is slow, employers are often reluctant to dismiss trained employees right away. Conversely, if business picks up, employers will use overtime for a while rather than risk the addition of more employees right away.
- 3) Overall employment parallels that for production workers. Data for production workers are available infrequently (U.S. Department of Commerce, 1990, Census of Manufactures); therefore data for total employment must be used. The number of non-production workers in areas such as sales and research and development is likely to be affected by business prospects for the future, rather than current production.
- 4) The change in worker productivity is negligible over the measurement period. In fact, anecdotal information indicates that worker productivity has increased dramatically in some industries. This is supported by data published by the U.S. Bureau of Labor Statistics, which show a 37% increase in the output for manufacturing workers over 8 years. (Harriman, et al, 1991) Unfortunately, productivity information is available only for selected SIC's, and as a national average for all persons in manufacturing. For aggregate state-wide measurement of

progress, it is possible to adjust employment by using the national average change in output (productivity) for all manufacturing employees. This makes the assumption that Massachusetts industries parallel the national average in terms of the mix of manufacturing and their change in productivity.

Given the error inherent in these assumptions, it was decided not to pursue normalization based on employment, either at the SIC or the state-wide level.

3.2.1.2 Value Added Data

At 5 year intervals, and with a 3 year lag time, the Bureau of the Census publishes the Census of Manufactures (U.S. Department of Commerce, 1990). 'Value added by manufacture' economic data are provided at 2-,3-, and 4-digit SIC levels. Value added avoids the duplication in value of shipments or gross sales that results from the inclusion of products or materials produced by others. While it is a good estimate of the dollar value of manufactured goods, dollar values are influenced by other factors, such as the cost of labor and profit margins. In addition, depreciation allowances are included for capital equipment, which reflects past capital investment rather than current production. Because it is a less than ideal proxy for production and infrequently available, value added was not considered in this study.

3.2.1.3 TURA and TRI Production Data

Because of the problems with publicly available economic indicators, this study examined TURA and TRI data elements that can be used to normalize TURA data, specifically:

- the byproduct reduction index (BRI) reported on the Form S and
- the production ratio (PR) reported on the Form R.

These elements provide an indication of the change in production specific to each facility's use of a toxic chemical. The BRI is a production normalized byproduct reduction index that incorporates changes in production. The production ratio can be used for estimating expected trends in use, byproduct and emissions. This estimate can then be compared to the actual trends calculated.

These types of facility and process specific indicators of production are the most accurate means for normalizing, for the LQTU facilities for whom data are available. However, they are not necessarily a good proxy for overall state-wide production. Therefore, certain TUR activities, principally those which incorporate TUR into the initial design phase, will not be reflected. For example, new, cleaner production facilities which start up, or new product lines where TUR has been incorporated into the design process, will never report under TURA. A state-wide economic

indicator would capture this expanded, cleaner manufacturing base, where production ratios for individual reporting facilities and production units will not.

3.2.2 TURA Data

The Massachusetts TURA data are reported by facilities on Form S; a copy is included in Appendix A. The data are stored within DEP's Facility Master File (FMF), an integrated database that holds facility data from all DEP programs. It is accessible to DEP personnel via a set of standardized reports or by viewing individual records on a computer screen. While this system maintains the accuracy of output by using only standardized reports, it limits the ability to manipulate and analyze the data. It also does not allow non-DEP personnel access to the data for analysis. DEP does have the ability to create "extract files" from the FMF. The extract files are PC-based text files of the principal data fields relating to TURA. This information can then be loaded into and manipulated by a PC-based database. While this affords flexibility, the downloading process also introduces a source of error.

The data fields viewed as most likely to contribute to the measurement of state-wide progress were:

- · chemical use, byproduct, and shipped quantities,
- TRI releases and transfers (included in the TURA database extract files)
- byproduct and emissions reduction indices (BRIs and ERIs),
- TUR technique codes (as qualitative measures), and
- production unit SIC codes.

The total quantities reported would provide a gross measure of toxics use and byproduct in Massachusetts. The BRIs and ERIs would be useful for normalizing and for indicating whether TUR activity was taking place. TUR technique codes would also be indicators of TUR activity. The SIC codes would be used to show how different industries were progressing.

The content and format of the TURA Form S on which facilities report TURA data was specifically defined by the TURA legislation. There are three levels of information required: chemical specific, production unit specific, and information about the use of listed chemicals in individual production units. The format of these sections of the Form S are described briefly below.

¹It should be noted that the data which are claimed as trade secret under TURA are not included in the extract files and so are not available for analysis by anyone outside of DEP. Aggregate quantities were provided by DEP so that trade secret data could be included in the most general state-wide measures. Unless otherwise noted, none of the results in this study include trade secret quantities.

3.2.2.1 Chemical Quantity Data

For each chemical, TURA specified that facilities report on the total amount of a toxic chemical used at the facility including the amounts manufactured, processed, or otherwise used. The facility also has to report on the amount generated as byproduct and shipped in or as product. The law very specifically stated that this information would be collected as an aggregated sumfor each chemical there would be one total number reported for each of the five quantities for the entire facility.

3.2.2.2 Production Unit Data

Facilities must divide their operations involving toxic chemicals into production units. A production unit is a process or combination of processes used to produce a product or family of products. A facility may define one or many different production units depending on what the facility decides will best describe its operations. For each production unit, a facility is required to describe the product, the general process used in the production unit, and the SIC codes that best describe the product made in the production unit. This information is provided once for each production unit although several different chemicals may be used in each production unit. As a facility and its products change, its production units may also change. Facilities are instructed by DEP not to redefine or reuse production unit numbers. When a production unit is no longer used or no longer uses reportable chemicals, its production unit number is retired. When new product lines are started up they are given new numbers.

3.2.2.3 Chemical Use in Specific Production Units

For every production unit in which a listed chemical is used, the facility is required to determine a base year from which progress will be measured, how much byproduct (BRI) and emissions (ERI) have changed since that base year, a code for the amount of chemical used in the production unit, and a code for the TUR techniques applied to the production unit. The codes for the amount used are specified in the legislation as:

- A (less than 5,000 lbs),
- B (5,000 to 9,999 lbs), and
- C (10,000 lbs or more).

The progress in reducing byproduct is reported as a byproduct reduction index (BRI). This is a production unit-specific calculation of reduction in chemical byproduct per unit of product. It is measured from a facility-defined base year to the current year. As such, it is already normalized for level of production. The BRI is calculated as follows:

$$BRI = 100 \frac{A - B}{A} \tag{3.1}$$

where

A = (byproduct in base year) / (number of units of product produced in base year)

B = (byproduct in reporting year) / (number of units of product produced in reporting year)

The emission reduction index (ERI) is similar but measures changes in the amount of emissions generated per unit of product produced.

A positive BRI or ERI indicates that the amount of byproduct or emissions generated per unit of product has gone down. A negative BRI or ERI indicates an increase in byproduct or emissions per unit of product. The BRI can be as large as +100, indicating the elimination of all byproduct while still producing product in the production unit. It can also be highly negative (e.g., -1000), as might happen when a bath is dumped infrequently². This type of tracking and calculation at the production unit level has the potential to provide the most accurate measure of TUR for reporting facilities.

TUR technique codes are reported if the BRI increased by 5% or more relative to the previous year. The TUR techniques to be reported are also specified in the legislation and are included with the Form S in Appendix A.

3.2.3 TRI Data

Unlike the TURA data which are reported at different levels, the TRI data are collected only at one level--total quantities for the listed chemical for the entire facility. Facilities report the information on the Federal Form R, both to the US EPA and to DEP. A copy of the Form R is included in Appendix D.

Much of the Form R information is stored in the FMF along with the Form S information. Some, but not all, of that information is downloaded into the extract files. In addition, for facilities that submit a Form R to the US EPA, TRI data is available on CD-ROM (US EPA, June 1995) as well

² If the bath containing a toxic chemical was not dumped during the base year, every reporting year after that in which it was dumped would show a large increase in byproduct per unit of product.

as on-line, for reporting years 1987 to 1993. By matching DEP facility names and addresses with those of TRI facilities, data from all sources can be combined and checked. For this project, some TRI data which were not available in the extract files were obtained from CD-ROM.

The releases and transfers reported on Form R are broken down into categories including:

- releases to different environmental media (fugitive and point source air releases, releases to land, releases to water, underground injection, land treatment, land disposal, and surface impoundments),
- transfers to publicly owned sewage treatment utilities (POTWs), and
- transfers to other off-site locations.

Since the amount of releases reported are often quite small, for this study releases to all environmental media were combined into one category. The quantities used from the Form R are: total releases, POTW transfers, and transfers to off-site. In some cases, these quantities were combined into a general 'TRI Releases and Transfers' quantity. In other cases the three categories were analyzed separately.

In addition to the quantities of releases and transfers, the Form R production ratio or activity index (PR) was used. This value represents the level of production at a facility in the reporting year, compared with the previous year. It is reported separately for each chemical and is defined as:

$$PR = \frac{Production(year2)}{Production(year1)}$$
(3.2)

When the production increases, the production ratio is greater than 1. When production decreases, the production ratio is less than 1. For example, a production ratio of 1.2 indicates a 20 percent increase in production. A production ratio of 2.0 indicates a 100 percent increase in production or double the amount of production over the previous year.

The EPA instructs facilities to calculate an 'activity ratio' instead of a production ratio when activities other than production are the primary influence on chemical usage. For example, the number of color changes at a printing facility may influence the cleaning needs more than the volume of printing produced, so an activity index based on the number of color changes can be used. The production ratio or activity index can be used to normalize the TURA and TRI data by factoring out changes in chemical use and byproduct generation related to changes in production level.

There has been some debate as to the accuracy of the production ratios. A 1994 U.S. General Accounting Office (GAO) report indicated that few manufacturers have the sophisticated data systems in place to provide reliable estimates of production or the waste related to specific production activities (US GAO, 1994). However, informal discussions with Massachusetts TURA filers have indicated that they have a high degree of confidence in the TRI production ratio, primarily because it is based on their unit of product data which are tracked for TURA reporting. EPA allows a wide latitude for estimating the facility-wide, chemical-specific production ratio. While they encourage calculations such as production ratio based on a weighted average unit of product, facilities may use a broad estimate instead. Massachusetts filers, however, indicated that they would be likely to use a weighted average of their more accurate production unit-based unit of product calculations to produce a facility-wide production ratio.

For this study, the TRI production ratios were available for 1991, 1992 and 1993, for all chemicals which were reported by each facility in the previous year. While there were a variety of inconsistencies in the reporting (see Chapter 4), the production ratios are available on a broad basis, in a timely manner, and are specific to the facilities under consideration. For these reasons, it was decided to pursue data normalization using the TRI production ratio.

Another TRI data element used was the facility-wide Standard Industrial Classification (SIC). These were used in conjunction with the SIC codes reported under TURA (at the production unit level) to create a facility-level SIC code for this study.

3.3 Data Useability

Because any methodology is only as good as the data upon which it relies, an important phase of the project was a review of the TURA data to determine their utility for measuring progress. Two aspects of these data that can affect the results of any methodology are data quality and reporting requirements. Data quality is how accurately the data collected, stored, and reported, reflect what actually happened at a facility. Reporting requirements include both the TURA legislation and the resulting regulations that prescribe what data are collected and in what format.

3.3.1 Data Quality

The quality, or accuracy, of the TURA data is key to the accuracy of the TUR measurement methodology. The data quality is a result of how it is collected, stored, and retrieved from the data management system. In the case of the TURA data, Forms S and R are used to collect the data and the data are stored in and retrieved from a data management system operated by the DEP. There are several points at which problems can affect data accuracy and reliability: facility reporting accuracy, data entry accuracy, and the accuracy of system utilities that manipulate the data.

At the facility level there are a number of factors that could affect the accuracy of the data reported on the Forms S and R. These are:

- lack of accurate measurement and/or reliance on inaccurate estimates,
- misunderstanding of reporting requirements, and
- clerical/mathematical errors in filling out the form.

Inaccurate reporting by the facility is difficult to detect and correct, except by direct, in-depth inspection of the facility. Although there are some general data quality checks that can be done on the reported data -- for example, ensuring that no BRIs greater than 100 are reported -- many reporting errors could go unnoticed.

At the DEP level, there are two ways in which errors can be introduced:

- when the data are entered into the system and
- when report or extract programs take data out of the system.

At the data entry point, errors can be the result of clerical mistakes transcribing the reports or lack of clear directions on what and how to enter the data. At the point data are extracted from the system for analysis, either in the form of reports or extract files, errors can be due to inaccurately programmed or inadequately documented reports and extract programs.

Because data quality can be affected at two levels, the analysis of data quality was done both at the facility level and at the agency level. A detailed facility level analysis, called the Facility Reality Check, was led by OTA. TURI researchers generated detailed reports for selected facilities based on the data in the extract files. The OTA researchers reviewed the reports and then visited eleven facilities where they met with facility personnel to discuss the reports and the reporting process. The objective of this part of the Reality Check was to determine what errors had occurred, what caused them, and how they could be prevented in the future. The Facility Reality Check is described in detail in Chapter 5.

The agency level data quality analysis, along with the documentation of obvious facility level reporting errors, was called the Data Consistency Check. This was a collaborative effort between TURI and DEP. TURI researchers used DEP-provided extract files to create custom reports for checking data consistency. These reports augmented DEP's existing "Data Exception" reports, which are run during the Quality Assurance/Quality Control (QA/QC) process by DEP prior to the release of the TURA data. The TURI reports were compared to DEP-provided reports and, in some cases, to the Forms S and R submitted by facilities. When problems were identified, DEP staff helped determine their source and determined the best method to fix the problem. The Data Consistency Check is described in detail in Chapter 4.

3.3.2 Changes in What is Reported

Regardless of what data elements are found in the reporting forms, the data that are actually available for analysis depend on what chemicals and industries are required to report and changes in a facility's status and use of a toxic chemical. The methodology needs to address these inconsistencies in the data.

3.3.2.1 Changes in Reporting Universes

Reporting under TURA was phased in over a four year period. Reporting was required for the majority of industries and chemicals in 1990 and smaller groups of industries and chemicals were added each year from 1991 to 1993. As a result, data for most, but not all, reporters is available beginning in 1990. Data for other reporters became available in 1991 through 1993 as depicted in Figure 3-1. However, the TURA goal of 50% byproduct reduction is set specifically as a measure of progress from 1987 to 1997. Since TURA data are not available for the years 1987 to 1989 and not all industries and chemicals were reported in 1990 through 1992, it is not possible for the existing data to measure progress from 1987. Efforts to estimate what would have been reported in 1987 had all industries and chemicals been required to report then are described in Chapter 6, Establishing a 1987 Baseline. In the absence of those estimates, the methodology developed measures progress for those subsets of the reported data for which data are available.

In the future, the chemicals and industries subject to reporting will continue to change as additional industries are added and chemicals are added or delisted. These changes in the reportable chemicals and industries cause changes in the quantities reported that are unrelated to economic or TUR activity. The methodology needs to account for these changes when measuring progress.

3.3.2.2 Changes in Facility Status

In addition to whether an industry or chemical is reportable in a given year, there are several other factors that determine if a particular facility is required to report on a particular chemical and whether those data are available for analysis. These include:

- chemical threshold if the facility's use of a chemical is below the threshold, the facility is not required to report that chemical,
- employment threshold if the number of employees is below the threshold, the facility is not required to report any chemicals, and
- trade secret if a facility declares that use information is confidential, the facility reports the information but it is not made available for analysis to anyone other than a few select DEP employees.

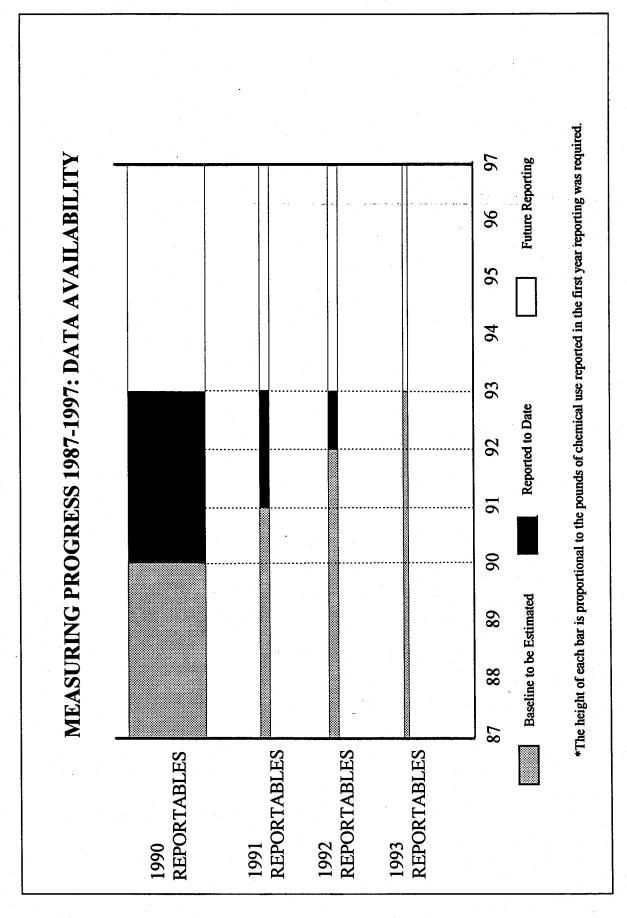


Figure: 3-1

The methodology needs to account for the effect of these inconsistencies that result from these factors regarding the data available for analysis.

3.3.2.3 Variations in Production Unit Base Years

Facilities are required to select a base year against which each year's TUR achievements are measured. The base year for each production unit-chemical combination varies depending on the data available to the facility for the year reporting was first required and subsequent changes in the production unit. Since each BRI may measure progress from a different base year, the methodology needs to account for the varying base years when the BRIs are aggregated.

3.3.3 Inconsistent Level Used to Report Information

The most significant problem with using the TURA data to measure progress is that information is reported at different levels that can not be reconciled. As described in sections 3.2.1 and 3.2.2, facilities use Forms S and R to report information about total quantities of a listed chemical used and released for the entire facility. The production ratio and chemical quantities are reported at the facility level while BRIs, ERIs, SIC codes, and TUR codes are reported at the individual production unit level. This is described in more detail, with examples, in Appendix H. However, the result is that it generally is not possible to use the BRI, ERI, and TUR codes to measure overall TUR progress for a chemical, nor can the SIC codes, as reported, accurately show chemical use by industry.

3.3.3.1 Using BRIs to Measure Progress

If a chemical is used in multiple production units, there is no way to tell, given the existing data structure, which production unit had the most impact on changes in chemical use. However, for those chemicals that are used in only one production unit at a particular facility, the BRI for the production unit is, in effect, the BRI for the chemical at the entire facility. If the chemical is used only in that production unit at that facility for several consecutive years, the BRI can be used to show facility-wide progress for that chemical. If enough facilities report only one production unit per chemical, their aggregated BRIs could be used as a measure of the statewide progress. The methodology developed in this study includes a measure of progress for these types of chemical-production unit combinations.

Ideally, the Massachusetts TUR measurement methodology would include an aggregated BRI metric for all facilities. There are several ways that this could be accomplished, all of which require additional data to be reported. One option would be for facilities to report a facility-wide BRI, which would be a weighted average based on each production unit's use relative to the total.

In addition to a BRI, a measure of facility-wide use reduction normalized for production level (e.g., Use Reduction Index - URI or Input Reduction Index - IRI) and an ERI could be reported. This would preserve the separation between a facility's production unit information and their chemical quantities. The facility indices could then be aggregated to calculate state-wide normalized reduction indices. Other alternatives for aggregating production unit indices would be for facilities to provide the unit of product quantities or to report chemical quantities at the production unit level.

3.3.3.2 Facility Level versus Production Unit Level SIC Codes

Form R requires that facilities report a primary SIC code related to the activities at the facility. TRI use and activity information can then be summarized using the primary SIC code. Form S, on the other hand, requires that a primary SIC code be reported at the production unit level. As a result, a chemical may be reported under several different "primary" SIC codes, one for each production unit. This provides a more accurate picture of the types of production units associated with toxic chemical use. However, because the SIC code is not tied to a particular quantity of chemical, TUR progress cannot be measured by industry. The use for each production unit is only given as a range and the majority of production units are in the 'C' range, greater than 10,000 pounds. If chemical quantity is aggregated by production unit SIC code, the quantity can be counted multiple times, greatly overstating the actual quantities. (See Appendix F for a more detailed description of this problem.) The Data Consistency Check described in Chapter 4 analyzed the extent to which quantities were over-counted when totaling quantities by production unit SIC codes. The methodology takes this issue into account when measuring progress by industry by creating a facility-wide SIC code for each facility, and by analyzing broad SIC groups, rather than individual 4-digit SIC categories.

3.3.4 Sensitivity of BRI to Non-TUR factors

The BRI has a narrow focus of one chemical-one production unit and it depends on one year's quantities. As a result, it is extremely sensitive to unusual occurrences unrelated to TUR factors. Examples of this include the following:

- If a chemical bath is dumped every 18 months, a company could go from nearly zero byproduct in one year, to an extremely large byproduct in the next year, all with no changes in production.
- If the quantity of byproduct generated in one year is small, for example 20 pounds, the next year the byproduct could easily be either 10 or 30 lb with essentially the same practices. Although the actual quantity change is not large, the resulting percent change is quite dramatic.

• Some production units have varying production rates, e.g., batch processes or a production unit that is being shut down. The change in the number of products produced can have a significant effect on the BRI unrelated to TUR.

In order for the BRI to be useful for measuring progress, the effect of these issues on the results must be minimal or the methodology needs to be able to identify large changes, either actual or relative, that are due to non-TUR factors. The Facility Reality Check, described in Chapter 5, describes what was learned about the BRI sensitivity to non-TUR factors at eleven different facilities.

3.4 Data Overview Summary

The methodology is largely defined by the data available. Toxic chemical use, byproduct and shipped data provided under TURA allow the development of a methodology to effectively measure TUR progress. Additional information available in TURA and TRI databases supplement these TURA quantities, allowing for a broad-based methodology, consisting of multiple quantitative and qualitative metrics.

The primary limitation of the data is the overall lack of consistency in reporting. This includes inconsistencies in the level at which data is reported (production unit vs. facility) and changes in reporting requirements from year to year. The methodology must be designed to accommodate these inconsistencies.

4 DATA CONSISTENCY CHECK

KEY POINTS

- The data consistency check assessed problems with the TURA reporting practices, data quality, FMF system utilities, and extract procedures that affect the ability to use the data to measure TUR progress. The complexity of the TURA data represents a significant data management challenge.
- TURI and DEP systematically identified, reviewed and addressed TURA data quality and data management issues. Issues which could not be addressed immediately have been catalogued.
- Inconsistent reporting methods cause difficulty in using a variety of information, particularly the BRI and other production unit-level data, to measure TUR progress.
- At the facility level, inconsistencies are related to changing reporting requirements, trade secret claims, metal bender exemptions, wastewater treatment chemicals, and facilities dropping below or rising above reporting thresholds.
- At the production unit level, inconsistencies are related to production unit numbering, changing base years, and SIC codes.
- FMF system problems include allowing 'duplicate' records to be entered and not allowing erroneous records to be deleted.
- The methodology can be designed to accommodate some of these issues, others require data input corrections, modification of the FMF system or extract procedures, or further reporter training.
- These data problems cause suspect measurement results for subsets of data, particularly for specific industries, facilities or chemicals, but do not appear to have a significant effect on the overall state-wide measurement of progress.

4.1 Introduction

The purpose of the Data Consistency Check portion of the PPIS project was to determine what issues existed with the TURA data that would impact the effectiveness of the methodology for measuring TUR progress in Massachusetts. The Data Consistency Check project was a collaborative effort between the DEP staff and TURI researchers which began in the Spring of 1994, although the majority of the work took place between October 1994 and August 1995. The project was initially begun to provide some confidence in the data being used for two of the reports mentioned in Chapter 2 (Tellus Institute's *Taking Stock* report and TURI's *Second Report on Further Chemical Restrictions* report). The areas of review included:

- · reporting practices and procedures,
- system utilities used to enter, report on, and extract data from the system, and
- data quality.

This chapter describes the methodology used for identifying data issues, the issues found, the status and schedule for resolving the issues, and a summary of the effect of the unresolved issues on the TUR measurement methodology.

4.2 Methodology for Identifying Data Issues

The steps described below were used to analyze TURA data extract files (ASCII text files) and reports. At each step, the reports and files were examined for problems in the areas of documentation, record format, and record content.

- 1) The compressed extract files were expanded and loaded into a PC-based database (ParadoxTM). The file structure of the PC database was kept as close as possible to the structure of the extract files to minimize conversion errors.
- 2) Programs were developed and run to test the internal consistency of the extract data. The consistency check programs were designed to check that individual facility chemical records contained a complete set of information and that the data "made sense" at a basic level.
- 3) Data in the extract files for selected facilities were compared to the Forms S and R on file at the DEP office.¹
- 4) Data in the PC system were compared to two standard DEP reports--a listing of quantities reported by every facility sorted by town (Report TUR17) and a listing of quantities reported by every facility sorted by SIC code (Report TUR21 2).
- 5) Programs were run that tested the methodology and the methodology universes to see if there were any noticeable anomalies in the data. The anomalies were then reviewed to determine the cause.

At each of these steps, potential problems were identified and reviewed by TURI and DEP to determine the cause and the best solution. Some of the problems that were found have been corrected. Other problems, many of which require extensive programming work, are still waiting

¹A facility is required to submit a Form S and R for every listed chemical, a total of approximately 11 pages for each chemical for each year it is reported. The file for a company that reports on three chemicals each year (the average number reported) contains over 120 pages. Files of companies that reports on 10 chemicals each year could be several inches thick. Because comparing the actual report submitted to the data in the extract files is a time consuming process, individual facility chemical reports were only checked when a potential problem was identified. Once a facility's file had been pulled because of one identified problem, all the data elements were reviewed for accuracy.

to be resolved and are described in the next section. Appendix H contains a brief list of all the problems found and the current status.

4.3 Problems Identified

TURA data issues can be categorized by where the problems originated and by the effect of the problem on the methodology for measuring TUR progress. In terms of where problems originated, the sources fell into one of three categories:

- Reporting practices and procedures this category included problems at the facility, agency, and legislative levels. At the facility level, problems occurred because of misunderstanding or misinterpretation of the reporting regulations. At the agency level, problems occurred because of the way in which facilities were instructed to report or the procedures for entering the data. At the TURA level, some problems are inherent in the way the legislation or regulations were written.
- System utilities this category included errors or inconsistencies in the programs used to enter the data into the FMF system, the programs that create reports from the FMF system, and the programs that create the extract files.
- Data quality this category included problems where a number was either written down incorrectly on the form by the facility or entered incorrectly into the FMF system.

This categorization of problem sources was useful in determining how best to resolve an issue. If the problem was due to facility error, it was added to a list of problems about which facilities were notified. If a problem was due to system utilities, reporting procedures, or agency data entry, DEP was responsible for addressing the problem. In response to some of the problems inherent in the TURA legislation and regulations, some recommendations for changes have been made in Chapter 9 and Appendix K.

The second method for categorizing TURA data issues is the effect of the problem on the methodology developed to measure TUR progress. Some problems could be corrected fairly easily or had minimal effect on the measurement results. Other problems require more time to resolve or would require changes to the legislation. In these cases, the methodology was modified to allow for these issues.

Invalid or unexpected data values were the result of both facility reporting errors and agency data entry errors. These problems were relatively easy to correct although they required more time for researching and for facilities to resubmit information. In general, the most easily corrected problems were those that were the result of errors in the DEP system utilities or incorrect data entry.

The rest of this section briefly describes the identified problems that have yet to be resolved and the steps that were taken to minimize their effect on the measurement methodology.

4.3.1 Incomplete Information

Because TURA data are reported at three different levels--chemical, production unit, and chemical-production unit--all three levels of information must be available for a complete data analysis. However, the data consistency check found a number of instances where records were missing information at one or two of the levels. These include:

- metal bender exemptions,
- · wastewater treatment units, and
- data entry errors.

The majority of the problems are due to the first two items. A small number of the problems are due to data entry error.

4.3.1.1 Metal Bender Exemptions and Wastewater Treatment Units

There are two categories of reporters for which production unit level information is not required, i.e., metal benders and waste water treatment chemicals. A metal bender is a facility that only changes the shape of metal and has an aggressive recycling program in place. These facilities report the amount of metal processed but are not required to report production unit level information or submit a filing fee for the metal. Likewise, chemicals used in wastewater treatment are included in facility quantities, but no production unit level information is supposed to be provided.

In any year, between 25 and 100 million pounds of chemicals fall into the category of metal bender or waste water treatment and, as a result, do not have complete information. The metal bender quantities are concentrated in a small number of chemicals, primarily copper and copper compounds. The majority of copper use is in a small number of industries in the 2-digit SIC groups 33, 34, 36, and 38. For these metals and industries, the methodology can not reliably indicate TUR progress until complete information is available. The wastewater treatment chemicals include a number of acids and bases, although an exact list is not available. The wastewater treatment chemicals are spread widely throughout all the SIC groups and no particular industry is greatly affected by the loss of this information although the methodology cannot reliably be used to measure the progress of these chemicals. More detailed information on metal bender exemptions and waste water treatment chemicals is provided in Appendix F.

4.3.1.2 Data Entry Errors

Some of the incomplete records are due to data entry errors. For the years 1990 through 1992, between 20 and 25 records each year accounting for between 1.1 and 1.7 million pounds of total use are incomplete due to suspected data entry errors. For the year 1993, the number of incomplete records increased to 74 with a total use of 4.7 million pounds (approximately 0.5% of total use). Some of these may be related to the 'no delete' problems discussed in section 4.3.4.2. These problems are currently being researched and are expected to be corrected in the next data release.

In addition, during the first years of the exemption, there was substantial confusion around which metals were being claimed as exempt by each facility, and about how that information would be stored in the FMF. As a result, there are a number of metal benders for which some year's data had not yet been entered when the extract files for this project were run. These records account for between 3 and 17 million pounds each year.

4.3.2 Inconsistently Reported Information

For a number of reasons, data are not always reported or entered in a consistent fashion from one year to the next. In some cases this is due to facility or agency error but in other cases it is due to the way the TURA legislation was written. These are described below and include: changing facility ID numbers, names and locations, changing production unit numbers, and changing base years from which progress is measured.

4.3.2.1 Changing Facility ID Numbers

At the facility level there is a problem with a facility's data being entered under different ID numbers in different years. Although the total TURA quantities are not affected, there is no way to match the facility's data from one year to the next. The result is that the facility is not included in calculations of weighted average production ratio. In addition, if the facility uses a chemical in only one production unit over all reporting years, that production unit cannot be used in the 'single production unit per chemical' model of the methodology. There currently are six facilities that appear to fall into this category. These facilities account for between 3 and 4 million pounds of total use per year. These problems are being researched and are expected to be corrected by the next data release.

4.3.2.2 Trade Secret Chemical Records

This study was done with TURA data that is available to the general public. Under Massachusetts TURA, a facility is allowed to claim that the quantity or name of a chemical being used is

confidential business or trade secret information. The facility's claim means that the information can not be divulged publicly without adversely affecting the company's business. In this case, the facility is required to file a complete TURA Form S and a "sanitized" Form S. The information is only accessible to specially designated employees at Massachusetts DEP. An inconsistency occurs when a facility reports a chemical in more than one year but does not claim it as trade secret in all years in which it is reported. In this case, the total amount of TURA chemicals available for analysis changes from one year to another.

Total Chemicals Reported Publicly in Some Years but Claimed Trade Secret in Other Years							
	90	91	92				
Manufactured Amount	73,000	110,000	189,000				
Processed Amount	4,368,469	18,608,777	3,319,967				
Otherwise Used Amount	2,280,174	3,877,341	4,971,627				
Total Use	6,721,643	22,596,118	8,480,594				
Generated Byproduct Amt	2,341,191	3,967,731	5,136,950				
Shipped in/as Prod Amt	4,265,552	18,538,995	3,292,835				
TRI Releases&Transfers	642,327	529,166	1,141,637				

Table 4-1

As can be seen from the table above, these records account for between 7 and 22 million pounds of reported total use (as much as 2% of all reported use) and 2 and 5 million pounds of byproducts (less than 4% of total byproduct) for the years 1990 to 1992. All the universes used to measure progress excluded all chemicals ever claimed trade secret.

Trade secret claims also result in an inconsistency between TURA extract files and publicly available TRI data. When a facility claims the TURA chemical quantities as trade secret there is no data provided for that particular chemical in the TURA extract files. However, release and transfer quantities for those same chemicals are included in the TRI database.

4.3.2.3 Inconsistent Production Unit Numbers

The reporting procedures instruct facilities to use the same numbers for a production unit from one year to the next and to retire any production units which are no longer appropriate. This is to allow comparison of TUR and BRIs in a production unit from year to year. However, due to facility and agency errors, the production unit numbers have not always been consistent. DEP's data input procedure is to contact facilities when there are questions about changes in production units. It is unclear whether this policy was followed consistently in the first few years of data input. Although a number of instances of inconsistent production units were found, determining the full extent of the problem would require a review of individual facility files.

The FMF system only has space to store one set of information for a production unit regardless of how many years it is reported. The information is updated each time new information is received. This can cause problems when a facility modifies a production unit. For example, a facility reports in one year that production unit number 2 is a degreasing unit in which Freon 113 was used. The degreasing unit is phased out and the facility mistakenly renumbers all production units to keep the numbers consecutive.² The following year, production unit 2 is reported as an acid etch bath that uses hydrochloric acid. If the data entry operator fails to correct or flag this discrepancy, the description of production unit 2 in the FMF system is changed to an acid bath and future reports show that both the Freon 113 and hydrochloric acid were used in an acid etch bath. This situation causes two different types of problems for the measurement methodology. First, chemical usage may not be attributed to the correct SIC code. Second, the fact that the data also show hydrochloric acid being used in production unit 3 in one year and production unit 2 the next year prevents it from fitting the 'single production unit per chemical' model.

4.3.2.4 Changing Facility Names and Locations

Another problem with TURA data is that name and address changes make it difficult to track facilities from one year to the next. There are two ways that this happens. First, personnel changes at a facility over the years leads to data being reported differently, either a different name is used or a different street or city address is given. For example, Ward Hill is a section of the city of Haverhill. In some years a facility's location is listed as Haverhill and in others it is listed as Ward Hill. This makes it difficult not only to track changes by area but it also makes it difficult to find facility files since they are filed according to city or town. There are also frequent name changes as companies are bought and sold. The second problem is that, as with the production unit level data, the FMF system has only one place to store facility level information. Each year, the address and contact information is changed to match the latest form. Historical records are kept of certain types of changes, but this information is not part of the extract files. In addition, the FMF data are also used by other offices within DEP, which can modify the name or address. The result is that the standardized report does not always match the data in the extract file. Because the methodology currently does not look at progress by location or facility name, this problem does not directly affect the results. However, it may be partly responsible for the problem with changing facility ID numbers described previously.

4.3.3 Invalid, Unexpected, or Undocumented Data Values

The TURI Data Consistency Check reports and the DEP Data Exception reports found a number of problems where data values were invalid, unexpected, or undocumented. An example of an invalid number is a BRI greater than 100, the highest possible value. An example of an unexpected value is a production ratio that is greater than 20. Although it is possible for a

² This is contrary to the DEP reporting instructions but not well understood by all facilities.

facility's production to increase 20-fold from one year to the next, it is not a common occurrence. An example of an undocumented value is a blank BRI (as opposed to a BRI equal to 0).

These included:

- BRI and ERI that were greater than 100,
- chemical records where the sum of reported byproduct and shipped quantities was significantly larger or smaller than the reported total use (amount manufactured, processed, and otherwise used) with no explanation,
- BRI or ERI much less than -100,
- chemicals with a production ratio less than 0, the lowest possible value,
- chemicals with a production ratio much greater than 10,
- chemicals with a production ratio much greater than 1 when use and byproduct did not change significantly from the prior year,
- chemicals with 0 production ratio when not the first year reporting,
- chemicals with blank production ratios, particularly when the base year is other than the current year,
- production units with a base year other than the current year with no BRI or ERI reported,
- facility names or city locations mismatches between the DEP standard reports and the data in the extract files.
- missing or extra facilities, and
- missing, extra, or invalid SIC codes.

These errors do not affect the overall measurement of TUR progress but can greatly affect measurement for an individual industry, industry group, chemical or group of chemicals, as well as the general ability to manipulate the data.

4.3.3.1 Duplicate Facilities

In some cases, facility information has been entered more than once under two different facility ID numbers. These records accounted for 27 million pounds of total use in 1991 and 1.4 million pounds in 1993, mostly in the processed category. These were excluded from the universes used to measure progress.

4.3.4 System Utilities

Several problems were found with the system utilities, the programs that enter and maintain the TURA data in the FMF files. Because the TURI researchers do not have direct access to the

FMF system, the exact nature of the problems could not be identified. This section describes the symptoms of the problems, which briefly are:

- duplicate key records allowed in the database,
- no delete function is available for records entered in error,
- non-reportable chemicals can be entered into the system, and
- data exist for years when not reportable.

The first two are the most significant and cause problems with the measurement methodology and are described in the next section in more detail.

The third and fourth are inconvenient but the few erroneous records are easily identified and can relatively easily be ignored. Non-reportable chemicals are chemicals that either a facility has reported erroneously although it is not on the list of reportable chemicals or have been incorrectly input into the system. The list of non-reportable chemicals in the system can be found in Appendix B.

4.3.4.1 Duplicate Key Records Allowed in Database

Duplicate key records are multiple records that cannot logically exist given the data structure. For example, in some cases the database would have two coversheet records for one facility for a given year even though only one coversheet can be submitted. In others, a facility would have two records for a single chemical for the same year with different quantities, even though only one Form S can be submitted for a chemical in any given year. In all cases of these records, the second record in the extract file was excluded from the study.

These records accounted for approximately 250 records in all the extract files combined, between 1.2 and 1.9 million pounds of total reported use per year, and between .9 and 1.2 million pounds of total reported byproduct per year. These quantities represent 0.1 percent of the total reported use and 1 percent of the total reported byproduct including trade secret quantities.

4.3.4.2 'No Delete' Records

The system utility program used to maintain the FMF system does not allow any chemical record to be deleted once it has been entered into the system. As a result, if a record has been entered in error, it remains forever in the system. Since data entry mistakes do occur on occasion, the DEP has developed a procedure for flagging erroneous records by setting quantities at the chemical level to 0, except for one quantity (the database system requires one non-zero quantity field). The one non-zero field is set to '1 lb'. Exactly which quantity is left as '1' depends on the person doing the correction.

There are approximately 195 of these records that cannot be deleted, called 'no delete' records. This is only an approximate number because the Duplicate Key records mentioned above may include 'no delete' records. In addition, of the 195 'no delete' records identified, 139 records have not been 'zeroed out' correctly and still contain values in the TRI releases and transfers fields or contain a number slightly larger than one in the five TURA fields.³ Because the quantities in the TRI fields tend to be small, the TRI quantities do not effect the measurement methodology. However, because part of the methodology involves analyzing facilities that have reported consistently over several years, these records need to be excluded from the methodology universes. The procedure used for excluding these records from those universes involved examining the five TURA quantity fields and excluding any record where the total of all five TURA fields was less than 10 lb.

4.3.4.3 Report Missing Facilities

The TUR17 report does not always include all facilities that are in the extract files. There appear to be undocumented procedures in the report that exclude facilities that have been closed or that were entered into the database erroneously. This problem makes it difficult to compare the extract files to the FMF database but does not affect the methodology.

4.3.4.4 Extra SIC Codes in Report

The algorithm that FMF's TUR21_2 report uses to categorize chemical use by production unit SIC code, includes use in SIC codes in years in which a chemical was not used in a production unit. For example, a facility reports a production unit 2 with SIC code 3643 in 1990 and with SIC codes 3643 and 3483 in year 1991 through 1993. Toluene is used in production unit 2 only in 1990. In this case, the TUR21_2 report would include the Toluene quantities under both 3643 and 3483. This is inaccurate and increases the extent to which SIC code reporting of quantities overstates actually quantities. This error does not affect the methodology, only the results of the standardized DEP report.

4.4 Impact on Measurement of TUR Progress

The result of all the identified data issues is that use of the BRI and production unit information is disrupted by inconsistencies and errors, and so can not reliably be used in most cases for measuring TUR progress at the facility, industry, and state level. Therefore, the methodology was developed to utilize the more reliable data, and to account for inconsistencies where possible. Table 4-2 shows the quantities that are involved in issues that affect the overall measurement of progress. The second half of the table shows the quantities that are involved in measuring

³manufactured, processed, otherwise used, byproduct generated, and shipped in or as product.

progress at the production unit level and therefore affect the use of BRIs, TUR codes, and SIC industry codes.

Impact of Data Issues and Incomplete Production Units

Total Use Affected by	Data Issues	(millions of p	oounds)	·
	1990	1991	1992	1993
Metal Benders with Missing Data	14.7	3	5	17.3
Duplicate Facilities		27.4		1.4
Duplicate Key Records	1.3	1.4	2.6	1.9
Inconsistent Trade Secret	6.7	22.6	8.5	.1
Total Use Excluded	22.7	54.4	16.1	20.7
Total Use in Extract File	927.1	1012.9	1033.6	1015.0
Percent of Total Use Excluded	2.4	5.4	1.6	2
(mmi	1990	1991	1992	1993
Total Use For Which Production Unit	Information ons of pound		SIC) is Not A	vailable
Incomplete Records	23.3	5.8	11.4	54.7
Inconsistent Metal Bender	74.2	71.7	78.0	81.0
Facilities with Different ID	3.3	3.6	4	3.1
BRI or ERI > 100	19.5	-	-	•
BRI or ERI <-500	.1	6.4	21.3	24.9
No BRI but Base Year not Current Year	89	70	110	120
PR < 0	-	7.3	4.3	3.7
PR > 20	-	6.2	5.3	10.4
Total Use with Production Unit Data Unavailable	206.1	167.4	230.3	294.7
Total Use in Extract File	927.1	1012.9	1033.6	1015.0
Percent of Total Use with Production Unit Data Unavailable	22.2	16.5	22.3	29

Table 4-2

5 FACILITY REALITY CHECK

KEY POINTS

- A detailed review of eleven facilities was performed to check how well the TURA data reflect actual TUR progress at facilities. The facilities were selected to represent a broad cross-section of facilities and industries.
- Nearly all of the selected firms had made TUR related changes to their manufacturing processes.
- "Best practices" in materials accounting were identified. They include: computerized tracking of chemical use and byproduct information, actual measurement of use and byproduct quantities rather than relying on estimates, and periodic checking of estimates and assumptions with actual data. Facilities that used "best practice" techniques had more confidence in their TUR data.
- Does the BRI accurately reflect TUR? Not in all cases. Characteristics of "low confidence" BRI's included production units with batch processes, small quantities of byproduct, difficulty in selecting a correlated unit of product, and poor base year data. Characteristics of "high confidence" BRI's included production units using "best practices" materials accounting, continuous processes and chemicals otherwise used with integral or no recycling.
- One firm regularly uses a modified BRI as an environmental management tool. Another firm uses an Input Reduction Index (IRI) daily to track chemical use per unit of product.
- Facility Form S data from the FMF extract files were reviewed for obvious reporting errors. The facility reporting errors identified resulted in a 1.8% absolute error in combined total use, byproduct and shipped. Data entry errors resulted in an additional 0.06% absolute error in total chemical quantities. There was a higher error rate associated with production unit information.

5.1 Introduction

Massachusetts' Office of Technical Assistance (OTA) role in the evaluation of TUR progress was to perform a 'reality check' on data reported under TURA. The purpose of the check was to examine whether TURA information reflects actual TUR progress among a subset of case study firms.

To perform the 'reality check', OTA examined TURA reporting at 11 Massachusetts firms. Firms were chosen from industries representative of the types of industry most frequently reporting under the state Act -- namely chemicals, plastics, metal manufacturing and finishing, electronics,

paper, coating, and textiles. The eleven firms included companies that manufacture, process, and otherwise use TURA listed substances. From a list of firms in each of these sectors, researchers selected firms as case study candidates based on four criteria:

- large quantity of chemical use,
- large number of reported chemicals,
- variation in the number of employees, and
- previous contact with the firm.

Researchers contacted potential participants and asked for their voluntary cooperation. Eleven firms ultimately were chosen for study. Table 5-1 presents data on these firms, including: the industry, operation SIC code(s), the number of employees, the number of production units, and the number chemicals reported in 1993.

The eleven case study firms represent a diverse set of manufacturing methods and approaches to TUR reporting. Case study firms varied in their

- use of chemicals with high vapor pressure (and hence difficult to measure fugitive emissions),
- use of chemicals used in water-based processes (and attendant difficulty measuring wastewater byproducts),
- use of chemicals converted and/or consumed during processing,
- reported amount of toxics use reduction,
- operation of job shops, semi-captive and captive operations,
- operation of batch, semi-batch, or continuous processes,
- operation of production units with integral recycling, and
- their use of consultants versus in-house planners to prepare annual TURA reports.

Table 5-1 Demographics of Firms Selected for Reality Check

Firm	Industry	SIC Code(s)	No. of Employees	No. of Prod. Units	# Chemicals Reported (93)
Textile Firm	Dyeing, Finishing, Coating	2299, 2269, 2262	350	2	12
Metal Finisher	Electroplating	3471	40	5	11
Paper Manufacturer	Paper	2261	150	1	9
Chemical Products Manufacturer	Coatings, Adhesives, Urethanes, Paint	2821, 2851, 2891, 2893, 2843, 2899,	170	8	17
Diversified Metal Manufacturer	Metal Cladding, Finishing, Electronics	3469, 3822, 3089, 3356, 3398, 3341, 3714, 3351, 3355, 3471, 3679, 3812, 3451, 3299	5,200	42	18
Coatings Manufacturer	Resins, Coatings	2851, 2891, 2893	100	3	21
Tape Manufacturer	Таре	2295, 2869, 2672, 2671,	160	4	2
Flexible Web Coater	Coated Paper And Film	2672	600	2	14
Plastics Manufacturer	Plastics	3087	120	1	6
Iron/Steel Foundry	Forging	3462, 3463, 3341	860	8	10
Leather Processor	Leather Products	3111	74	1	7

Given the main objective of this study -- namely to assess the extent to which publicly reported TURA data reflects progress at these 11 case study firms, researchers developed a series of interview questions. The questions were aimed at understanding how firms collected, stored, and analyzed data used to file their annual TUR reports with DEP. The questions, outlined in Figure 5-1, were posed to the person responsible for TURA reporting at each company. For small companies, this person often has several job responsibilities. In larger firms with dedicated environmental staff, the person charged with TURA compliance answered the research questions. Site visits and interviews at each firm lasted two to four hours. Following the visit, researchers received additional information via telephone and fax.

The following questions were asked of each case study firm. These questions were chosen to understand the linkage between TURA reporting data and reductions at each case study firm.

General Questions:

Describe the main TUR changes your firm has instituted since 1989.

Do you believe your firm's TURA reports reflect these changes? If not, why?

Materials Balance Data:

How do you do your material balances? Where is the data stored?

How do you estimate use, byproducts to each media, conversion, and shipped-in-product?

How has your procedure for putting together a material balance changed since 1987? Since 1990?

Production Unit Definition:

How did you define your production unit(s)?

Would you like to change your production unit definition(s)? If so, why?

Do the attributes of types of products produced in your production unit(s) change? If so, describe the magnitude and type of change(s)

Unit of Product:

How did you choose your UOP(s)?

Is the UOP(s) the same as the EPA Form R Production Ratio/Activity Index

Have you changed you UOP(s) since the base year? If so, why?

Would you like to change your UOP? Why?

Indices:

What confidence do you have that the BRI and ERI reflect the TUR (or lack there of) in each of your production units?

Do the TURA codes in this part of the form reflect the kinds of changes you have made to your production units?

TURA Planning:

In preparing your TURA plan, did you refine or make changes to the way you collect/report TURA data?

Was the TURA planning process helpful? If so, how was it helpful? If not, why?

How did you develop your 2 and 4 year TUR goals -- what assumptions did you make in the data to calculate these goals?

Substitution:

Have you made any TURA chemical substitutions since 1989?

If so, what chemical did you substitute? What was the substitute chemical?

Other Reporting Questions:

Has your past reporting made it simpler to answer this year's questions on process codes?

How have your data collection methods and systems changed since you first started collecting TURA data?

What confidence do you have in your baseline data versus the current year's data?

Did someone else prepare the Form R(s) and S(s) in previous years?

Have you filed any changes or amendments with DEP for a prior year's TURA filing?

Have you attended OTA/DEP seminars on TURA planning? When?

Figure 5-1 Research Questions

5.2 Findings

5.2.1 TUR Accomplishments

Nearly all of the firms interviewed in the study have made TUR changes to their manufacturing processes since 1989 (ten of eleven firms cited TUR accomplishments to researchers). While interviews with case study firms pointed to varying levels of TUR progress, all eleven firms were cognizant of the Commonwealth's new focus (as of 1989) on preventing pollution as toxics use reduction. Table 5-2 highlights a portion of the case study firm TUR accomplishments.

Table 5-2 Case Study Firm TUR Accomplishments

Table 5-2 Case Study Firm TUR Accomplishments					
Firm (Industry)	TUR Accomplishments				
Textile Firm	Modified coating equipment to run more water-based coatings (as opposed to solvent-based coatings). The company also eliminated acetic acid by switching to glycolic acid however the substitution pushed hydrochloric acid use over 10K lb. threshold (8K to 11K). The firm reduced chromium dye use by convincing customers to switch to non-chromium dye agents.				
Metal Finishing	Improved control of additions and storage and handling procedures to reduce methanol use and byproducts.				
Paper Manufacturer	Reduce use of sodium hydroxide by 45% per unit of product by improved operation and maintenance of process equipment.				
Chemical Products Manufacturer	Market-driven substitution of water-based coatings for solvent-based coatings. The company has also reduced waste by increasing its use of waste-reducing piping, improved scheduling, and use of larger and/or dedicated tanks.				
Diversified Metal Manufacturer	Firm has a broad-based, risk-based TUR program that includes phaseout of all chlor-organic compounds, ozone depleting substances, hydrochloric acid, cyanide, cadmium and ammonia. Firm has redesigned products, modified processes, and re-invented manufacturing operations to meet its aggressive TUR goals.				
Coatings Manufacturer	Stopped using 1,1,1 trichloroethane as a coating component as a result of labeling law. The company has also reduced their use of lead chromate pigments.				
Tape Manufacturer	Eliminated methyl ethyl ketone as a cleaning solvent, replacing it with a M-Pyrol-based cleaner. The company has switched to more water-based and higher solids adhesives.				

Firm (Industry)	TUR Accomplishments
Flexible Web Coater	Eliminated the use of Michler's Ketone, methyl-isobutyl-ketone, and methoxyethanol as coating components. The company also minimizes the use of virgin solvent for wash-up and has been making a broad-based effort to evaluate and switch to aqueous-based coatings prior to 1989.
Plastics Manufacturer	Eliminated lead chromate, hexavalent chromium, and cadmium pigments in their product. The elimination of cadmium pigments allowed them to eliminate antimony and selenium as well. They are still using chromium. But at one time they were using chrome III and VI now they only process chrome III.
Iron/Steel Foundry	Replaced a glycol ether based cleaner with an aqueous cleaner and ultrasonic unit
Leather Processor	No TUR

With a broad array of TUR accomplishments in the study, researchers turned to examining how these firms measured their progress under the terms laid out in the state Toxics Use Reduction Act. In examining these measurement practices, researchers looked for 'Best Practice' measurement methods.

5.2.2 Materials Accounting Best Practices

Any evaluation of TUR progress tracking must examine the manner in which materials accounting data are collected. This portion of the report examines how the 11 case study firms collected their use, byproduct, and emissions data for TURA reporting.

Most firms (ten of eleven companies) in the study agreed that their materials accounting methods had improved since 1989. These improvements ranged from measurement of byproducts and emissions (as opposed to estimates), to better inventory control procedures, to employee training. The most prominent change, however, was the computerization of TURA data. Computerization included the use of batch processing software to better track production operations, use of spreadsheets and databases to determine and compare chemical use with reporting thresholds, and the incorporation of TURA data elements into production control data tracking systems.

5.2.2.1 Use Tracking

In order to examine reporting accuracy, investigators established a set of materials accounting 'best practices'. When employed, the practices produce materials accounting data that most accurately determines chemical use and byproduct generation. Best practice chemical use tracking includes:

- 1. combining purchasing, shipping, and inventory records to obtain an accounting version of materials use and cross checking the accounting information with physical inventory checks and production floor tracking to spot data inconsistencies,
- 2. determining which reportable chemicals were used at the facility for the reporting year from MSDS's,
- 3. tracking the formulas of intermediate and final products that contain reportable chemicals,
- 4. track chemical use on the production floor via batch tickets, material transfer records, and production logs to obtain a production version of materials use (as opposed to an accounting version of use), and
- 5. computerization of items 1-4 above.

Researchers examined the extent to which case study firms employed the 'best practices' outlined above. None of the case study firms employed all of the practices. However several firms employed some of the practices -- these firms had the most accurate data on which to examine chemical use. One example of such practice was the diversified metals manufacturer. The firm uses a 'Just in Time' inventory system and therefore carries little chemical inventory -- no more than two weeks worth at any one time. As a result each chemical is brought in specifically for each production unit -- therefore production-unit level chemical tracking is quite precise. A second firm (flexible web coater) also exemplified several best practice materials accounting techniques. The firm generates batch tickets for both product formulations as well as equipment cleaning. While companies employ batch tickets for products, only the flexible web coater used wash tickets -- enabling them to accurately track solvent usage in an ancillary operation. This method gives them a wealth of production unit level data that makes their reporting extremely meaningful.

While most firms in the study had a fairly good handle on facility-wide use data, few firms had accurate production unit level data tracking. This is due to the lack of a chemical chain-of-custody from the chemical store room to the production floor point-of-use. For example, the textile firm has difficulty tracking their processing chemicals. The firm has accurate measures of monthly chemical use for processed chemicals because they closely monitor their chemical inventory. Yet once the chemical moves onto the floor for use in a process, they lose track of it. The batch tickets that the firm uses for its products do not describe the chemicals used for each job. While implementing a system to track actual usage would be expensive, it would provide valuable business information in addition to good TURA data.

Table 5-3 delineates 'Best Practice' chemical use tracking among case study firms. One firm in the study, the flexible web coater, demonstrated the best use tracking. Because of its practices, it had the most accurate production-unit level use data of any case study firm. The numbers in column one of Table 5-3 pertain to the best practices outlined on the previous page.

Table 5-3 Best Practice Use Tracking

SCOPE Best Practice Technique Number	Activity	Best Practice	# Firms to which activity applies	# Case Study Firms demonstrating close match to Best Practice
FACILITY WIDE	Inventory	physical inventory periodically checked against purchasing records;	11	6
2	MSDS Tracking	computerized	11	2
2	Calculating Thresholds	all MSDS's monitored for TURA chemicals	11	11
3	Formula Tracking	computerized	5	1.
4	Otherwise use batch and equip. cleaning	batch tickets generated, actual use recorded	10	1
4	Chemical Adds	actual measures recorded	11	8
4	Recycling (hard piped)	track actual use/byproduct	4	1
PRODUCTION- UNIT LEVEL 1-4	Production Unit Level Data - Use - Formula Tracking - Batch Tracking	computerized, daily tracking, measure chemical use instead of allocating or estimating	11	2

5.2.2.2 Byproduct Tracking

The second chief data element in a materials accounting format is byproduct measurement and estimation. Most firms determine their byproducts via engineering approximations such as emissions factors, filling loss rates, transfer loss rates, and chemical consumption estimates. Best Practice techniques to determine TURA byproducts include:

- 1. use of engineering factors as approximations;
- 2. periodic checking of engineering factors with actual testing to assess their accuracy;
- 3. actual byproduct-stream measurement; and
- 4. cross checking of byproduct data by performing analysis with use, conversion, and shipped-in-product information.

Best practice clearly would be to measure byproduct generation rather than using estimation methods. Few firms, however, measure byproducts on a continuous basis. Several firms periodically measure such factors whereas other firms make only estimates with little basis in actual testing. The researchers found that companies with comprehensive byproduct information had not collected it specifically for TURA but for other regulatory (Clean Air Act) or business purposes.

Two firms best exemplify 'Best Practice' byproduct tracking — the flexible web coater and the diversified metal manufacturer. The flexible web coater collected extensive emission data as a result of requirements under the Clean Air Act. The data provide the coater with an accurate measure of byproduct generation at the production unit level. The diversified metals manufacturer employs engineering factors but performs testing to adjust these factors. For example the company tests its acid etch baths to understand the relationship between acid use, consumption, and byproducts in its etch processes. In another operation, the diversified metal manufacturer uses byproduct estimates for their plating chemicals, but cross checks these with RCRA waste data. This is precisely the type of check that make an estimate a much more reliable piece of data. Byproduct 'Best Practices' for the 11 case study firms are outlined in Table 5-4.

One major weaknesses researchers found in materials accounting methods was a lack of production unit level data. This information simply is not collected by most firms. Instead companies use estimates and assumptions about factors to determine byproducts. Few firms periodically check these assumptions with actual testing. For example, the textile company uses engineering factors to determine byproduct for processed chemicals. By assuming that a certain constant fraction of use becomes byproduct, the BRI does not give a meaningful indication of TUR progress -- for example changes that make the process more efficient will not show up in the BRI since the byproduct factor is held constant each year. Furthermore, the firm has no way of knowing whether one process creates significantly more waste than others and should be targeted for toxics use reduction efforts. The textile firm was not the only firm to adopt generalized estimates of byproducts from factors -- researchers consistently found this practice among case study firms.

A second weakness concerns how firms calculated amount of the toxic chemical shipped in product. In several instances, firms derived shipped-in-product figures by subtracting byproduct estimates from annual use. Thus the shipped in product numbers were no more accurate than the spurious byproduct estimates.

Byproduct tracking was most difficult for batch-production firms with broad product families — such as the coatings manufacturer and chemical manufacturer. Each time a batch is run, a given volume of toxic material is used to clean the production vessel, pumps, and values. Such cleaning chemicals typically are reused several times and are often used as raw material in subsequent batches. With tens of batches of product run daily, these manufacturers find it difficult to track cleaning chemicals in any way other than by engineering estimates. Since the firms have little faith in their tracking data, the data are relatively meaningless for targeting TUR opportunities.

Researchers found variation in measurement for the same chemical used in the same or very similar processes at different firms. For example, the forging firm had a very accurate tracking system for acid usage in an etch operation. The company tests acid baths daily. Acid byproducts in the form of evaporation and carryover are also measured. Such tracking presents an accurate picture of acid use, consumption, and byproducts. Other firms in the study do no such testing, however. While their use data is accurate, consumption and byproduct (air emissions and carryover) figures are based upon best-guess estimates. It's important to note that the forging firm performs regular

testing because its process is very sensitive to acid content — not because the firm wants to collect more accurate TURA data.

Table 5-4 Byproduct Tracking Best Practices

Best Practice Technique Number	Activity	Best Practice	# Firms to Which Activity Applies	# Case Study Firms Demonstrating Close Match to Best Practice
1,2	Utilize engineering factors for byproduct calculations	check engineering factors with actual periodic testing	7	2
3	Production unit level data for byproduct generation	measure byproduct instead of estimating amounts	all	none
3	Chemical batch dumps	testing prior to dumping	9	2
3		tracking each use recording the data	10	2
4	Metal alloys byproduct tracking	shipping and purchase records, measuring waste tonnage	4	2

5.2.2.3 Production Unit Definition

The review of materials accounting practices led to an examination of how firms defined their production units. Three firms defined their entire facility as one production unit while others divided the facility into multiple production units. The advantage to broadly classifying the facility into one or two production units is that such classification greatly simplifies that level of data detail needed for TURA reporting. Yet this practice generally defeats the purpose of collecting production unit data to examine the chemical use and losses of each process. For example, in the case where a chemical is used in several production processes in a plant, dividing the plant into multiple production units will help to identify gains or losses in process efficiency.

There are cases in which it makes sense to identify the facility as a single production unit. The best case for such a classification among the 11 case study firms was the paper mill. The mill runs a single, continuous process that produces a single product. Thus a single production unit is the most logical (and simplest) way to track progress.

When firms designated greater numbers of production units, they retained the ability to track TUR progress more closely. But more production units translate into more data collection -- such as production-level use, byproduct, unit of product, and emissions tracking. Without exception, the eleven case study firms designated their production units based upon data availability. Since existing data drove production unit definitions (as opposed to TURA reporting), existing data

influence how accurately a firm would track its TUR progress. Table 5-5 summarizes how case study firms defined their production units.

Best practice production-unit definition is exemplified by the diversified metals manufacturer. The firm designated 42 production units using a team process involving plant-wide personnel and facilitated by the firm's environmental manager. The production units correspond with cost tracking, production control, and management responsibility. However these production units were designed to fit an existing data collection and management reporting structure and were not invented for the purposes of TURA. The firm's production control system tracks a surprisingly high-level of materials accounting data in each of the 42-production units, producing reliable TUR progress data.

Other case study firms were not so meticulous in their reporting. Several firms grouped multiple processes into highly aggregated production units. The coatings manufacturer's use of highly aggregated units made unit-of-product tracking difficult and lacked finely divided data that could aid in identifying opportunities for TUR. Other firms designated production units but failed to measure production-unit level data. For example, the forging company designated eight different production units but does not record production-unit level data. This company reports no BRI/ERI because they have done no TUR — thus any reported numbers would be due to random noise as opposed to any real reductions (or increases). At the same time this practice prevents the firm from using production units for unit operation analysis. While the firm has taken the time to analyze their facility and divide it into multiple production units, they do not put these production units to any productive use.

Table 5-5 Case Study Production Unit Definitions

Firm	No. Prod. Units	Basis for Production Unit Definition	#93 Chem
Coatings Manufacturer	3	Two main product categories, acrylic and non-acrylic based products, and third PU is solvent washing and distillation step	21
Tape Manufacturer	4	Various coating lines	2
Flexible Web Coater	2	Two main substrates coated, paper and film	14
Plastics Manufact.	1	Facility wide production unit	6
Iron/Steel Forging	8	Combination of differing materials forged and processes used such as metal cutting, acid treatments	10
Leather	1 .	Only one chemical process, occurring within an enclosed drum	7
Textiles	2	PU #2 fabric preparation, PU#1 rotary screen printing and dyeing of fabrics	12
Metal Finisher	5	Plating lines plus wastewater treatment and one PU for the entire facility	11

Firm	No. Prod. Units	Basis for Production Unit Definition	#93 Chem
Paper Mill	1	Entire facility	9
Chemical Products	8	Product lines and families of product lines and one for the still	17
Diversified Metals	42	Chief production departments	18

Several of the case study firms have taken a second look at the way they have designated their production units and modified their definitions to better fit their manufacturing activities. Other firms expressed interest in such redefinition. For example, the tape manufacturer would like to revisit the way it has designated production units and possibly redefine them. This stems in part from the fact that the current environmental manager was not in that position during the base reporting year. They have designated their solvent reclamation system as two additional production units on each of the main coating lines, but have incorrectly recorded BRI information for these production units.

5.2.2.4 Determining and Tracking the UOP

This section examines normalizing factors used in different industry sectors. An accurate unit of product allows a firm to measure TUR progress while correcting for changes in business activity. The variety of units of product represented here is an indication of the choices available to firms making this decision. Generally speaking, non-physical measures are less accurate than physical measures of production. The more closely the unit of product is related to the chemical usage, the more accurate the measure.

All firms in the study chose their unit of product from available data (as opposed to collecting new data specifically for this purpose). But relatively few firms believed that their normalizing factors did an excellent job of adjusting byproduct generation to the firm's level of production. For one firm in the study (paper mill), choosing the unit-of-product was relatively straight forward. The firm produces one product in one continuous process and the causal link between production and chemical use/byproduct generation is obvious. However the relative ease of the paper mill's unitof-product choice was the exception to the rule. More often firms were faced with more complex product mixes, uncertain relationships between production and use/byproducts, and a paucity of easily-available production data. Nevertheless, several firms overcame such obstacles to produce rather accurate normalization factors. For example, the flexible web coater uses square vards coated as their unit of product. Their coating machines have various capacities ranging from single to multiple coating heads. Depending on the product, the machine may coat one or both sides of the substrate. Rather than just using production numbers of square yards coated, they have developed a database that tracks the number of times each square yard is coated and with what product. This database was originally developed for tracking VOC emissions but provides excellent information for TURA purposes as well.

Other firms were unable to overcome their unit-of-product tracking dilemma. For example, the leather finisher uses surface area (of the tanned hides) as their unit of product. Surface area is an industry standard — the hides are bought and sold using this measure. Yet problems occur when different types of hides need different chemical treatments/dyes. The firm does not track chemical treatment by hide type. Thus their surface area measure does not capture chemical usage as accurately as it could. The forging company also felt their unit-of-product was less than perfect. The firm uses weight as a unit of product. However the firm would prefer to use surface area as the unit of product for the acids used in a chemical milling process. Because the chemical baths are used to etch the metal surface, surface area would produce more accurate results than weight. Yet the company has no other use for the surface area information — making it difficult for the environmental manager to justify tracking production in this manner. Thus the manager continues to track production through the acid milling process based on the weight of product processed.

The chemical products manufacturer uses pounds handled and blended in each area for its unit of product. The coatings manufacturer uses gallons of product sold as a unit of product. Both have many problems since the product mix and chemical composition of a given product family changes constantly. The chemical company's product mix also changes over time; thus, the unit of product numbers can cause wide swings in BRIs. The inaccuracies of this measure also contribute to the widely fluctuating BRI's of the coatings company.

The textile manufacturer faced the most difficult unit-of-product decision of our 11 case study firms. The textile company uses pounds of fabric processed in the dyeing and finishing operations. This unit of product can be confounded by a host of factors:

- different fabric weights,
- dye shade (e.g., there are 50 shades of blue and thus pounds of fabric dyed blue is a poor UOP),
- the firm does not record how many pounds of fabric were processed with a given chemical, and
- incoming greige goods often require different types of chemical processing.

Chromium tracking is a good example of their UOP difficulty. The firm estimates that 5% of all chromium use ends up as an emission. The firm also calculates what percent of fabric processes by the company could have been dyed black. Thus fabric weight variations, black shades, and the fabrics that actually was dyed some shade of black confound their unit of product.

There are no simple answers to these unit-of-product challenges. Any attempt to improved unit-of-product tracking (and along with it BRI accuracy) will involve improving production control computer systems. Decisions to make such improvements are rarely driven by the environmental department. Nevertheless, improvements in data collection would provide better information not only for TURA purposes, but also (and more importantly) for key business functions such as loss control, product costing, and inventory management.

5.2.3 Measuring Progress

5.2.3.1 Byproduct Reduction Index

One method for measuring a firm's TUR progress is the byproduct reduction index (BRI). The BRI represents normalized TUR progress in each production unit. To examine the extent to which the BRI measures actual TUR changes (or the lack thereof), researchers performed both qualitative and quantitative analyses of BRI's. Case study firms were asked the level of confidence they had in their BRI's. "High Confidence" connotes a BRI that accurately reflected a production unit's TUR progress (or lack thereof). "No Confidence" connotes a BRI that does not reflect a production unit's TUR progress. Such BRI's included those with large negative values or wide unexplained swings in the data from year to year. "Some Confidence" connotes BRI's that give an indication of a production unit's progress but are not considered very accurate by the firm's environmental manager.

While these categories are somewhat subjective, they help interpret the BRI data. "Low Confidence" BRI's were most often due to small quantities of byproducts (e.g., 150 lbs) normalized by large amounts of production. Even at constant levels of production, these waste quantities can change appreciably -- doubling or halving each year due to equipment cleanouts or extended production runs. Another factor contributing to low-confidence BRI's was the use of poor base year data. No matter how accurate the reporting data has become, BRI's based on poor base year data will compromise a production unit's ability to accurately reflect TUR progress.

Researchers found that BRI confidence was highest for firms making broad-based shifts from solvent products or coatings to water-based products or coatings. BRI confidence was also high for captive operations otherwise using a chemical with integral or no recycling. Continuous processes (as opposed to batch) such as those used by the paper manufacturer tended to have confident BRIs. Another factor confounding BRI confidence was the use of less accurate base-year information.

Batch manufacturers had the greatest difficulty in using the BRI to track progress. These manufacturers often have little use, byproduct, shipped-in-product, and unit-of-product data for each batch produced. The BRI is further complicated in such operations when manufacturing different products in each batch mixture. Table 5-6 delineates the confidence case study firms had that their 1993 BRIs reflected their TUR progress.

Table 5-6 Case Study Firm BRI Confidence

Firm	Number of BRIs	High Confi- dence	Some Confi- dence	No Confi- dence	Comments
Textile Firm	9	0	3	6	Somewhat confident BRI's reflect shift from solvent to aqueous textile coatings. Spurious BRI's are for batch processes with difficult to track byproducts and unit-of-product.
Metal Finishing Firm	11	0	11	0	Firm could guess at reasons for positive or negative BRIs but was not confident in explanations.
Paper Manufacturer	na	na	na	na	Firm reported no byproducts
Chemical Products Manufacturer	57	0	41	.16	Offered plausible explanations for BRI's. Negative BRI's chiefly due to changes in estimation procedures and small losses combined with large production volumes.
Diversified Metal Manufacturer	142	51	34	57	Company carefully analyzes and tracks its BRIs and seeks to understand year-to-year shifts in production unit BRI's.
Coatings Manufacturer	26	3	0	23	Used the miscellaneous code for 18 positive BRI's. With 3 exceptions, could not confidently state BRI reflects actual TUR changes. Eight Chemicals with negative BRI's.
Tape Manufacturer	. 7	0	7	0	Firm has some confidence that BRI reflects TUR changes but have limited confidence in base-year data
Flexible Web Coater	19	18	1	0	Firm believes BRI's reflect TUR switch to greater use of aqueous coatings.
Plastics Manufacturer	6	6	0	0	Confident that BRI's reflect actual TUR changes such as switching from heavy-metal pigments to non- listed pigments.
Iron/Steel Forge	na	na	na	na	Firm reported no byproducts; Firm says it has done no TUR on currently reported chemicals, thus its BRI equals zero. Firm has little confidence in its base-line data.
Leather Processor	4	0	0	4	Don't believe BRI's reflects progress. Firm has entered no codes for positive BRI's since they have made no TUR changes (3 of 4 BRI's are positive).
Total	281	78	97	106	

One firm in the study that made significant TUR progress could not represent this progress using their BRI. In their case, the company generated no byproducts and therefore had a zero BRI. In their case, an input reduction index (IRI) provides a better picture of their progress. Analysis of chemical input data supplied by the company showed significant input reductions per unit-of-product (see Table 5-7). According to the environmental manager, TURA spurred

daily input per unit of product tracking. Such tracking helped the firm to make improvements in its chemical use efficiency -- resulting in significant chemical cost savings. The paper manufacturer was not the only case study firm to track input data. The metal finisher tracks a monthly IRI. The firm uses the analysis of monthly chemical use to track chemical costs -- costs that comprise a large percentage of the firm's direct manufacturing expenses.

Table 5-7 Paper Manufacturer IRI Chart

Chemical	IRI	BRI
Sodium Hydroxide	54%	no byproducts
Sulfuric	-4%	no byproducts
Calcium Hypochloride	93%	no byproducts
Aluminum Sulfate	59%	no byproducts

Of our eleven case study firms, one firm (diversified metal manufacturer) was keenly interested in using the BRI to track the firm's environmental progress. The firm's environmental manager saw the BRI as a useful diagnostic tool. The manager however modifies the BRI information to track firm progress so that it reflects environmental risk. This and other modifications to the BRI make it then useful for internal purposes -- chiefly to provide feedback for facility and department needs. Every other firm in the study calculated the BRI annually but did not look at the BRI on a more frequent basis. In these cases, the BRI is not useful as a proactive tool for providing real-time feedback to production areas on their environmental improvement projects. We define use of the BRI as a real-time feedback tool as 'BRI Best Practice' and note that only the diversified metal manufacturer used methods similar to such practice.

5.2.3.2 TUR Technique Codes

Another way to measure TUR progress from TURA annual reports is the use of TUR technique codes. TUR technique codes are used to describe increases of five points or more in a production unit's BRI. Such codes are two-part in nature — the first part describing the TUR method and the second part describing the part of the process where the TUR change occurred. Examples include 'input substitution in processing operations' and 'production unit modernization in finished goods handling'. There are eight TUR methods and three process locations (materials handling/storage, processing operations, and finished goods handling) yielding a total of 24 different TUR technique codes.

Most of the case study firms (nine of the eleven) used the TUR technique codes to describe TUR changes in their production systems. The TUR technique codes did a fair job of representing their TUR changes. Firms often used multiple codes since their TUR projects

were multifaceted — for example, production unit modernization in processing operations and improved operation and maintenance in materials handling/storage. The nature of complex TUR changes to production systems make it difficult to precisely describe these changes with a simple code system. Thus the codes provide a rough picture of the TUR methods and part of the process where these methods have been employed. But this picture is not always accurate.

One problem researchers found with this system was the use of the codes to explain changes in a production unit's BRI that were not caused by TUR changes. With no option to report a code that indicates no TUR changes have been made, most firms in the study reported codes any way. There is no opportunity in annual reports to indicate that the positive change in a production unit's BRI is due not to a TUR change, but caused by some other factor (such as large swings in production or a poorly correlated unit of product). Because BRI's can swing wildly positive and negative year to year (with no actual TUR changes to the production unit), the requirement that firms must account for each five point BRI shift means "false reporting" of TUR technique codes occurs frequently.

5.2.3.3 Chemical Substitution Effects

One often cited issue raised in measuring toxics use reduction progress is chemical substitution. Critics have argued that firms can switch to substitutes that are toxic but are just below the reportable threshold or that are not listed. Our research found relatively little evidence of such substitutions. One company did eliminate acetic acid by switching to unlisted glycolic acid. However this substitution pushed their hydrochloric acid from 8,000 lb annually over the 10,000 lb threshold to 11,000 lb. The switch also introduced the use of phosphoric acid -- a TURA chemical the company previous was not using. This switch was made to reduce the firm's VOC usage and in the technology investigation of the switch, the firm looked explicitly for non-listed chemicals that would provide the same function as acetic acid.

This experience with acetic acid is more the exception than the rule among our 11 case study firms. We found firms looking for safer substitutes to reduce their TURA chemical use without introducing new environmental or employee health and safety risks into the work place. Firms were uniformly sensitive to the TURA list and searched for non-listed substitutes in their TUR project efforts.

5.2.3.4 Facility Reporting Errors

To assess how accurately TURA material balance information reflects actual chemical use and byproduct patterns at the case study firms, researchers performed an analysis of all Form S chemical cover sheet data submitted by the eleven facilities. The first step in the analysis consisted of comparing TURA extract files, generated by TURI, with each Form S submitted to DEP. The comparison enabled researchers to look for data entry and other errors. The

comparison also enabled researchers to compare chemical reporting patterns from year-to-year. Such comparisons were helpful in spotting company reporting inconsistencies -- for example one firm had a chemical with no byproducts in one year yet reported byproducts in other years. Researchers brought up these inconsistencies when interviewing case study firms to determine if the inconsistencies were errors or based on true chemical use and byproduct generation patterns.

It is important to understand that researchers did not perform a detailed audit of each case study firm's material balance data. Such an audit would examine purchase, inventory, and use data, measurements and engineering factors used to estimate byproducts and shipped in product calculations, and chemical reaction calculations. One would expect to find further company data calculation and estimation errors with this type of scrutiny. Instead researchers sorted out obvious reporting errors.

Our review found several obvious firm reporting errors (see Table 5-8). The net error was less than one quarter of a percent. However this number is deceiving since firm errors with different arithmetic signs cancel one another. The absolute value of all firm errors changed the total amount of combined use, byproduct, and shipped-in-product by less than two percent.

Table 5-8 Firm Reporting Errors 1990-1993

Category	DEP Extract Files Total (lb)	Absolute Value of Facility Error (lb)	Percent Facility Error (Absolute Value)
Manufacture ¹	3,557,503	2,489,396	70.0%
Process	93,066,747	0	0.0%
Otherwise Used	81,277,404	339,298	0.4%
Byproducts	90,854,323	3,443,231	3.8%
Shipped in Product	74,364,929	21,600	0.0%
Total	343,120,906	6,293,526	1.8%

No single type of reporting error predominated among the eleven firms. As Table 5-9 indicates, these errors ranged from improper chemical balances to mis-reporting of chemical use type (for example, process rather than otherwise used).

¹The large error for chemical manufacturing is a due to two manufacturing errors among a very small set of chemical manufacturing usage types. The effect is magnified due to the small amount of chemical manufacturing performed by the case study firms.

Table 5-9 Sample of Errors

Error Type	Example	Frequency
Wrong chemical reaction	Assume ammonium hydroxide forms non-listed solids whereas listed byproducts are formed during the reactions	2
Reported a chemical when no chemical should have been reported	Reported manufacturing a metal fume/dust in two years error made by a consultant	2
Reported chemical compound as byproduct rather than the metal alone	Report chromium compound byproducts rather than chromium	2
Reported wrong type of use	Reported chemical as processed rather than otherwise used	2
Redefined production units	Consolidated production units from 14 to 8 but did so without creating new production unit numbers	1
Failed to report a chemical for one year (but reported the chemical in other years)	reported MEK in 90, 91, and 93 at amounts well above the threshold; did not report MEK in '92 yet had use over the threshold	1

5.2.3.5 Data Entry Errors (DEP)

To check for DEP data entry errors, researchers compared the Form S's in the firm's DEP file with data generated from the TURA extract files. Researchers found few data entry errors in the chief materials accounting categories of use, byproducts, and shipped-in-product. As Table 5-10 indicates, the total chemical use, byproducts, and shipped in product for the 11 case study firms (127 chemicals) in DEP's extract files was only 0.06% off the actual Form S submittals. While care should be taken generalizing from 11 firms and 127 chemicals it appears that this is not likely to be a large source of error for chemical quantities.

Table 5-10 DEP Data Entry Errors 1990-1993

Category	DEP Extract Files Total (lb)	Absolute Value of Data Entry Error (lb)	Percent Data Entry Error (Absolute Value)
Manufacture	3,557,503	0	0.00%
Process	93,066,747	73,512	0.08%
Otherwise Used	81,277,404	41,761	0.05%
Byproducts	90,854,323	56,632	0.06%
Shipped in Product	74,364,929	23,948	0.03%
Total	343,120,906	195,853	0.06%

Researchers also examined the non-numeric data entered from the Form S reports. Here they found a higher error incidence than that found in materials accounting data. The most problematic errors resulted from the mis-entry of the listing of production units. This occurred for 3 of the 11 case firms. The mis-entry produces a mismatch between a chemical and its production unit records. For example, a chemical with two production units is switched with another chemical with 3 production units. The production unit information (BRIs, chemical use codes, and TUR codes) no longer corresponds to the correct chemical. These data entry errors go unnoticed by industry since they do not receive summary reports of the data DEP has in its database.

One method used by researchers in this report to measure the state's TUR progress is to look at the TUR progress of production units that have been consistently reported from year to year. However, errors using this technique can occur when DEP mis-enters production unit data or when firms incorrectly change their production unit definitions. Of 391 BRI's reported in 1993, 250 had a production unit level data error -- typically the production unit had an incorrect description and/or SIC code. While 219 of the 250 errors were from one firm's report, six of the eleven case study firms had one or more production units with incorrect production unit data in the DEP TURA database. Of the 250 errors, 16 were due to improper consolidation of production units by one firm; 219 appeared to be due to one data entry error where the elimination of one production unit caused a large number of production units to be assigned to the wrong numbers; and 15 were miscellaneous data entry (see Table 5-11). These types of problems are difficult for DEP to identify using standard QA/QC procedures. While they may not affect the overall quantities in the database, they do affect the integrity and interrelationships of the various data elements.

Table 5-11 Sample DEP Data Entry Issues

Error Type	Comments
Incorrect chemical CAS #	1
Missing production unit level data	7 PU's
Failed to enter any data for a chemical	2 chemicals
BRI entered incorrectly or not entered at all	Firm's BRI entered as 100 but was reported as 100, 4 missing BRIs
Miscategorization of chemical use type	DEP incorrectly recorded sulfuric acid usage as processed rather than otherwise used. 1 occurrence
PU's incorrectly entered	Case 1: DEP created a PU, as a result PU data for 3 (of 11) chemicals have been entered incorrectly since 1993. Case 2: Miss-entry of PU numbers messed up 25 of 42 PU records.

6 ESTABLISHING A 1987 BASELINE

KEY POINTS

- TURA's 50% byproduct reduction goal is to be measured against a 1987 baseline, however, TURA reporting began in 1990. Therefore, byproduct must be estimated for 1987.
- An estimated 1987 baseline is being developed which builds on the 1987 TRI data. 1987 byproduct is calculated as the sum of the following 1987 quantities:
 - 1) EPCRA releases and transfers, adjusted using waste treatment efficiencies (from 1987 TRI reports)
 - 2) Amount recycled on-site, out-of-process (from 1990 reports and survey)
 - 3) Amount of CERCLA chemicals (from 1990 reports and survey)
 - 4) Amount from non-manufacturing facilities (from 1991 reports and survey)
 - 5) Amount from facilities not reporting in 1987 for other reasons (survey)
 - 6) Adjustments for 1) through 5) from top 20 1990 users (survey)
- Information will be collected from TRI and TURA data, supplemented with information from representative surveys of facilities in each of the above groups.
- A pilot survey indicated that most facilities would be able and willing to provide the data requested in the survey.

6.1 Objectives and Overview

The Toxics Use Reduction Act established 1987 as the baseline from which to measure the 50% byproduct reduction goal; TURA reporting, however, was phased in between 1990 and 1993. As a result, no TURA data exist for the years 1987 through 1989 and the data are incomplete from 1990 to 1993 since no data are available for chemicals and facilities which were phased in over those years. DEP was charged with the task of estimating quantities for those years in which no TURA data exist. A method to develop this baseline was developed over the last year and piloted in the summer of 1995. Data collection and implementation began in the fall of 1995. Although the final baseline data have not been established at this time, this is expected to be completed by April 1996. This chapter describes how the baseline is being estimated and the results of the project to date.

6.2 Sources of Information

The 1987 baseline should include use, byproduct and emission amounts for any TURA listed chemical used in Massachusetts in 1987 above the TURA reporting threshold by any company that employed more than 10 full-time employees in 1987 and is in one of the TURA regulated SIC codes. There are two sources of information that can be used to estimate these quantities prior to the time TURA data was first reported. These are 1) the federal Toxics Release Inventory (TRI) data and 2) the data from the first year a facility or chemical was required to report under TURA.

6.2.1 Federal Toxics Release Inventory Data

TRI data are submitted by facilities on the federal Form R. In 1987, Massachusetts TURA facilities were required to file a federal Form R under TRI if at least 75,000 pounds of a TRI listed chemical was manufactured or processed or 10,000 pounds were otherwise used. Although not all TURA chemicals or SIC codes were required to report under the federal Form R requirements, those facilities responsible for the majority of the total chemical use reported under TURA in 1990 filed a federal Form R in 1987.

Although the Form R does not ask for byproduct per se, the byproduct amount can be calculated or estimated from other information on the form. By definition, byproduct can be calculated as follows:

TURA byproduct =

- the quantity of the chemical reported transferred and released under TRI
- + the amount destroyed on-site through treatment,
- + the amount sent out of the process to on-site and off-site recycling and energy recovery.

The 1987 Form R includes quantities transferred and released from the facility and indicates whether or not there was destructive treatment. It does not contain any information on quantities of chemicals recycled on-site or off-site. This information was not reported on the Form R until 1991.

6.2.2 Massachusetts Toxics Use Reduction Act Data

As presented in chapters 2 and 3, the TURA data are available beginning in 1990 with additional industries and chemicals phased in over the next three years. In estimating a 1987 baseline, the gap must be filled between 1987 and the year the chemical was first required to be reported by the facility.

6.2.3 How the Available Data Sources Can Be Used

The TRI and TURA data will be used to estimate the baseline byproduct for all chemicals and facilities that would have reported in 1987 if all facilities currently required to report under TURA had submitted a Form S in 1987. This means that:

- CERCLA chemicals, chemicals added to the TUR list after 1987, and chemicals used by firms in the non-manufacturing SIC codes will be *included* in the 1987 baseline.
- Chemical data from companies that first exceeded the use threshold for that chemical or first employed 10 FTEs after 1987 will be excluded from the 1987 baseline totals.
- Chemicals that have been (or will be in the future) delisted from the TUR list will be excluded from the 1987 baseline totals.

6.2.3.1 TRI Chemical Reports (Form Rs) Submitted in 1987

For Massachusetts TURA filers for which a 1987 Form R was submitted, the 1987 byproduct will be estimated as follows:

- 1987 transfers and releases can be assumed to equal byproduct *if* there is no destructive treatment reported in 1987 *and if* no recycling or energy recovery was reported on the 1991 TRI reports.
- If destructive treatment was reported for the chemical, byproduct can be back-calculated from transfers and releases by dividing the portion of the waste stream treated by the efficiency rate of the treatment system.
- If recycling and energy recovery activity were reported on the 1991 TRI report (or the first year the chemical was listed), the facility will be contacted to determine if these practices were in place in 1987, and if so, whether the amounts were the same or significantly different than those reported in 1991. The firm's rough recycling estimates will be added to the reported transfers and releases.

6.2.3.2 Form R's Not Submitted in 1987

When no 1987 TRI report is available for a chemical and facility that should be included in the baseline it will be necessary to obtain estimates of 1987 byproduct levels from firms.

Chemical reports in this group include:

- TRI chemicals, manufactured or processed between 10,000 and 75,000 pounds in 1990 (assumed to have also been between 10,000 and 75,000 pounds in 1987),
- chemical reports from facilities in the non-manufacturing TURA SIC codes, and
- chemicals added to the TRI list between 1987 and 1990 and to the TUR list after 1990.
 (CERCLA chemicals or new TRI chemicals)

This will require contacting facilities to determine:

- 1) if the firm met the reporting criteria for the chemical in 1987, and if so,
- 2) whether their 1987 byproduct and use levels were significantly different than those reported in their first year of reporting and if so,
- 3) a rough estimate of what the byproducts and transfers and releases were in 1987.

6.3 Methodology for Developing Baseline Data

The methodology for establishing a 1987 baseline builds on the 1987 TRI data. 1987 byproduct is calculated as the sum of the following 1987 quantities:

- 1) EPCRA releases and transfers estimated from 1987 TRI reports
 - adjust waste streams with destructive treatment using waste treatment efficiencies
- 2) Amount recycled on-site, out-of-process
 - identify recyclers from 1990 TRI
 - survey random sample of 60 facilities, extrapolate to total universe of recyclers
- 3) Amount of CERCLA chemicals
 - identify users of CERCLA chemicals from 1991-1993 TURA
 - survey random sample of 60 facilities, extrapolate to total universe of CERCLA users
- 4) Amount from non-manufacturing facilities
 - identify non-manufacturers from 1991 TURA
 - survey total universe of approximately 40 facilities
- 5) Amount from facilities not reporting in 1987 for other reasons
 - identify facilities which reported in 1990 but not in 1987
 - survey random sample of 60 facilities (not already included in above surveys)
- 6) Adjustments for 1) through 5) from top 20 1990 users this step ensures that the top users are included in the survey

- identify top 20 toxic chemical users in 1990
- survey (if not included in above surveys) to obtain 1987 data

The process to implement the methodology is as follows:

- 1) Develop a facility survey including what information to seek, in what form, how questions will be phrased.
- 2) Select facilities to survey. This will include the top 20 toxics users in Massachusetts and a representative sample of other companies.
- 3) Pilot test the survey to determine if a full survey is feasible and whether meaningful results can be obtained.
- 4) Review pilot results with TURA Program Evaluation Consultation Group.
- 5) Proceed with top 20 toxics users.
- 6) Complete remainder of full survey.
- 7) Analyze results.

Only the first four steps have been completed at the time. A detailed description of the results of steps 1) through 4) is presented below.

6.3.1 Developing the Survey

In order to obtain the data from facilities that needed to be contacted, an initial survey was developed by DEP to learn whether the information needed would be easily obtainable. DEP did not want to have facilities spend a considerable amount of time on the survey; information that was collected should be readily available at the facility. Exact information was not requested. Rough estimates could be given because many facilities had not collected the data in 1987 or were still unfamiliar with the method of reporting data.

The initial list of companies was chosen from three lists:

- Recycle List Companies that recycled in 1990,
- CERCLA List CERCLA chemical users in 1993 that also filed for non-CERCLA chemicals in 1990, and
- No 1987 Data List Companies that filed in 1990 for which DEP had no 1987 data

The companies on the Recycle and CERCLA lists were selected by first determining which chemicals had been reported by the greatest number of users. The top 5 CERCLA chemicals (excluding Sodium Hydroxide - it was reportable as an EPCRA/TRI chemical in 1987) and 9 recycled chemicals were identified. (see Table 6-1) For each of these top chemicals, a high quantity and a low quantity user was chosen. The chemicals on these two lists are shown in Table 6-1. Companies were selected from the No 1987 Data list at random.

Recycled and CERCLA Chemical Lists for 1987 Survey

Recycled Chemical List	CERCLA Chemical List
Acetone	Potassium Hydroxide
Chromium	Acetic Acid
Copper	Butyl Acetate
Freon 113	Ethyl Acetate
Methyl Ethyl Ketone (MEK)	Aluminum Sulfate
Acetic Acid	
Butyl Acetate	
Ethyl Acetate	
Aluminum Sulfate	

Table 6-1

DEP also attempted to get some companies that were on one of the lists, some that were on two of the lists, and some that were on all three of the lists. The sample ended up including

- companies on both the CERCLA and the Recycle lists,
- companies on both the CERCLA and No 1987 Data lists, and
- companies on all three lists (CERCLA, Recycle and No 1987 Data).

DEP also selected companies that used many chemicals and companies that only used a few chemicals.

6.4 Development and Results of Pilot Survey

In August 1995, DEP piloted a survey for gathering 1987 estimates. Twenty-five companies were in the original sample. Of these, one had gone out of business and seven could not be used in the pilot (five contacts were on vacation, one facility was dropped because the data were unclear, and one facility had no appropriate contact). Of the remaining 17 facilities, five facilities provided answers either by completing the survey and returning it or by answering questions on the phone.

Respondents agreed to participate readily in the survey. The individuals who responded included environmental managers, presidents of companies, and certified Toxic Use Reduction Planners. Usually respondents requested that the survey be faxed to them and then called back to say when they could provide the data. All but one respondent felt that the information was readily available. One firm had purchased the facility in 1990 and had no records from 1987.

The results of the pilot survey were brought for review to the TURA Program Evaluation Consultation Group. This group of government, business, and environmental leaders evaluated the survey results and concluded that DEP should continue with its proposed methodology to obtain data. The survey was updated slightly in order to make it easier for survey respondents to understand the layout of the survey. Assistance was given to DEP by a survey expert in developing the questions and determining the sample size. This updated survey was sent for review to the evaluation group members on September 12, 1995. Responses were positive.

6.5 Plan and Schedule for Full Survey and Analysis

6.5.1 Methodology

One possible methodology was to survey just the top twenty filers for the 1987 baseline, because this group makes up such a large percentage of the chemical use by manufacturers. However, the objective was to fairly represent all industrial manufacturers who have been working on the goal of 50% reduction of byproduct for the Commonwealth. This could only be obtained by surveying a sample from facilities in a number of different SIC codes. As a result, three different groups of facilities were included in the survey.

The top twenty filers based on total use reported in 1990 constituted the first group of facilities. This group is being surveyed because they make up 76% of the total use in the Commonwealth of Massachusetts in 1990.

The non-manufacturers are the next group of facilities. There are forty-one facilities in this group. All of these facilities will be surveyed because they are a very diverse group.

The final list is a random selection of facilities from the initial three lists: companies that recycled in 1990, CERCLA chemical users in 1993 that also filed in 1990, and companies that filed in 1990 for which DEP has no 1987 data. It was determined with the help of the survey expert that surveying 60 facilities from each of the three initial lists would provide a sufficient number of respondents to ensure a representative 1987 baseline. Companies were chosen on a random basis by using a standard random chart. If the randomly selected company had already been surveyed on the pilot survey or had already been chosen for one of the other lists, the next available company was chosen until 60 were selected for each group.

In order to make the process of responding to the survey as simple as possible for the facilities, the DEP gathered as much existing data for each facility prior to the first contact. Where applicable, this information included 1987 and 1990 reported TRI data and 1990-1993 reported TURA data.

6.5.2 Status of Full Survey

Because of time constraints, DEP chose to begin the survey with the top twenty user facilities and those randomly chosen from the Recycle list. The remainder of the facilities will be surveyed in the near future and the results will be made available in April 1996.

At this point, the top 20 companies have been surveyed. Of the 14 top user facilities that were contacted for the survey in the time prior to the writing of this report, 2 did not fit the survey criteria, 3 facilities had closed, and 1 facility had already given DEP necessary data without the survey. Eleven facilities eventually completed the survey although 6 facilities required numerous phone calls to obtain the information.

When this report was written, 43 of the total 60 recycle list facilities had been contacted, and completed surveys had been received from 18 facilities. Managers at three facilities have said they will not be completing the survey, one facility had no one available at the facility at this time to collect the data, and two facilities considered it to be too much work.

In general, respondents to this survey were as willing to help as those that completed the pilot survey. This time, however, more time was needed to complete the survey due to deadlines for other regulatory reporting requirements. Survey respondents did say they would cooperate once their other mandatory reporting obligations were fulfilled. The types of respondents were the same as the pilot survey. Survey respondents wished to have the survey faxed to them. Most responded by faxing the survey back several days later.

6.5.3 Schedule for Remaining Tasks

The work which remains to be completed includes: 1) finish surveying top 20 and recyclers, 2) create spreadsheet to store and analyze data collected, 3) receive information and input into spreadsheet, 4) analyze results, and 5) repeat process for remaining 180 companies. Steps 1 through 4 will be completed by February 2, 1996. Step 5 is scheduled to be completed by April 2, 1996. The result will be the establishment of a 1987 baseline, from which progress to 1990 and other first reportable years can be estimated.

7 METHODOLOGY OVERVIEW

KEY POINTS

- The methodology for measuring Massachusetts TUR progress includes normalized and non-normalized quantitative measures.
- The quantitative measures analyze the byproduct generated, total use (amounts manufactured, processed, and otherwise used), amount shipped in product, amount released to the environment and amount transferred off-site.
- Changes in reporting requirements were allowed for by calculating progress for different subsets of the TURA data, termed "universes." Each universe included facilities and chemicals that were consistent over the years for which progress was measured.
- Normalization for changes in production was done by using the TRI production ratio to calculate expected quantities. Expected quantities are the amount of toxic chemical which would have been expected in the second year without TUR. When the expected is larger than the actual quantity, the difference is assumed to be due to TUR.
- Because of issues around quality, consistency and useability of the BRI data, the study focused on BRI "reality check," rather than BRI analysis.
- The methodology also includes the analysis of subsets of chemical groups and industry groups

7.1 Introduction

Based on the results of previous studies and the analysis of data availability, a methodology consisting of multiple metrics was developed. The multiple metrics respond to the different goals of TURA, and also provide a comprehensive measurement tool. A comprehensive tool provides metrics which provide overall measures, as well as those which draw out the reasons behind overall trends. In addition, multiple metrics produce a more robust methodology. Comparing the consistency of trends across metrics can either bolster confidence in the results, or indicate problems in the analysis. The methodology includes measures of:

- actual changes in quantities,
- changes in quantities normalized for changes in production,
- changes in quantities for specific groups of chemicals,
- changes in quantities for specific groups of facilities, and
- qualitative indicators of TUR activity.

Toxic chemical quantities examined include: byproduct generated, used, shipped in or as product, released to the environment and transferred off-site.

7.1.1 Quantitative and Qualitative Measures of Progress

There are two ways to measure state-wide progress in toxics use reduction--qualitatively and quantitatively. Qualitative measures look at the characteristics of what is reported without detailed analysis of the numerical data. Qualitative measures will indicate *if* TUR activity is taking place but will not be able to say specifically to what extent the TUR activity is responsible for reductions in the use of toxics and generation of byproducts. Quantitative measures analyze the numerical data reported. Quantitative measures provide answers to the question of how much effect TUR efforts are having. Qualitative measures are particularly useful for validating or invalidating quantitative results. This project concentrated on quantitative measures although some qualitative measures were reviewed.

7.1.2 Normalized and Non-Normalized Measures of Progress

Using the TURA and TRI data to quantify state-wide progress in TUR is a difficult task because changes in quantities reported can be caused by a number of factors, including:

- increases and decreases in production,
- · changes in production processes or products, and
- changes in product mix.

Any or all of these could be related to TUR efforts; they could also be related to economic factors. Since the goal of TURA is to decrease toxics use and byproduct generation, not decrease economic activity, measures need to be developed which factor out non-TUR effects. A non-normalized measure uses the gross numbers being reported. This type of measure will show whether the overall trend is increasing or decreasing and will provide an indication of total toxic chemicals used and byproduct generated in the Commonwealth. In contrast, a normalized measure attempts to factor out the influence of events other than TUR that could also cause the reported gross numbers to increase or decrease. Normalized measures indicate whether reductions in byproduct and emissions are the result of TUR or declining production.

7.2 Development of Measurement Methodology

Because of the complex nature of the TURA data, the methodology used here consists of two basic quantitative calculations performed on several different quantities for many different subsets of the TURA data. The calculations measure the actual changes in reported quantities and compares them to a normalized or 'expected' change based on reported production levels. The

calculations and the quantities on which they are performed are described below. Qualitative measures are described in Section 7.2.2.

These measures show progress (or lack thereof) in different segments of the data. The segments are referred to as 'universes.' This segmentation is necessary because of differences in what is reported each year. It is not possible to measure change when what is reported in two different years is different. Therefore, the methodology measures progress in individual universes and compares and contrasts the results for different universes. Taken together, the measures provide an overall picture of progress as well as an indication of how much and where that progress is being made.

The different universes were created to determine the extent to which the measurements are affected by the data availability and useability described in Chapter 3. In some cases, a universe includes records for all chemicals that were reported by a facility over a number of years. In other cases, a universe includes only records that would have been reported if facilities and chemicals met specific reporting criteria. The universes measure:

- Overall Progress
 - · based on when reporting was first required
 - based on data actually reported in two consecutive years
- Progress by subsets of facilities:
 - those that reported all four years
 - those that reported the same chemicals all four years
 - those that reported the same chemicals in the same production unit all four years
 - comparison of large versus small toxics users
- Progress by subsets of industries
- Progress by subsets of chemicals

How each universe is defined and which reporting issues it is intended to address is described in more detail in section 7.2.3.

7.2.1 Quantitative Measures - Actual and Normalized

The TURA and TRI quantities which were used for non-normalized and normalized measures include:

- total toxic chemicals used (manufactured plus processed plus otherwise used),
- toxic byproducts generated,
- toxic chemicals shipped in or as product, and
- toxic chemicals released or transferred.

These quantities are totaled for different universes prior to performing the measurement calculations. For example, if measuring the change in byproduct, the total of all the byproducts reported for all facilities and chemicals in the universe is calculated and then the calculations described below are performed.

Actual or non-normalized measures look at the trend in the actual quantities reported. Actual progress is the change in a quantity reported between a beginning year and an ending year:

$$\Delta Q = Q_1 - Q_2 \tag{7.1}$$

where:

 ΔQ = change in quantity reported, lb

 Q_1 = the quantity reported in the beginning year, lb

 Q_2 = the quantity reported in the ending year, lb

The percent change in quantity reported is given by:

$$R = 100 \frac{Q_1 - Q_2}{Q_1} = 100 \frac{\Delta Q}{Q_1} \tag{7.2}$$

For example, if the total amount of byproduct reported by all facilities and chemicals in a given universe is 200,000 pounds in the first year of reporting and 160,000 pounds in the last year of reporting, the actual change is:

$$\Delta Q = 200,000 - 160,000 = 40,000 \text{ lb actual reduction}$$
 (7.1)

$$R = 100 \times (200,000 - 160,000) / 200,000 = 20\%$$
 actual reduction (7.2)

However, the change in actual numbers alone is not necessarily a good indication of toxics use reduction because these quantities can change for other reasons than TUR. The gross quantities reported need to be adjusted or normalized to take changes in production levels into account. Two different normalization methods were tested, one using the TURA BRI and the other using the TRI production ratio (PR). Both methods are described below but due to data quality, useability and consistency issues described in Chapters 3 and 4, only the production ratio was used for normalizing data in the final study.

7.2.1.1 Weighted Average Production Ratio

This methodology assumes that changes in production result in directly proportional changes in the quantities of chemical used and byproduct generated. It also assumes that the production ratio (PR) is a reasonable reflection of how production changed from one year to the next. The PR reported on the TRI Form R is the change in production of the current year relative to the previous year. If the production ratio is less than 1, then production has decreased since the prior year. If the production ratio is greater than 1, then production increased. If no TUR changes are made at a facility, then the changes in reported quantities would be due to changes in production levels. The 'expected' quantities due to changing production levels can be calculated based on the facility's reported production ratio. Comparing the "expected" quantity if no TUR occurred to the actual quantity reported on Forms S and R would show the change attributable to TUR. Thus the "normalized" change is the quantity avoided due to TUR activities.

Given the actual amount reported in one year and the amount that production changed in the second year, the 'expected' quantity for any particular facility-chemical pair in the second year is:

$$Q_e = Q_1(PR_2) \tag{7.3}$$

and the normalized reduction or amount avoided is:

$$Q_n = Q_e - Q_2 \tag{7.4}$$

where:

 Q_n = normalized reduction, quantity avoided due to TUR

Q_e = quantity expected to be reported in the second year,

 Q_1 = quantity actually reported in the first year,

Q₂ = quantity actually reported in the second year, and

 PR_2 = production ratio reported in the second year.

Given as a percent, the relative quantity avoided is:

$$R_n = 100 \frac{Q_e - Q_2}{Q_e} = 100 \frac{Q_n}{Q_e}$$
 (7.5)

For example, if 100,000 lb of toluene is used in one year and the following year's production increases by 10% (PR = 1.1) the toluene use would be expected to go up 10% as well to 110,000 pounds. If instead the toluene use only goes up 5%, to 105,000 pounds, the methodology

assumes that TUR is responsible for avoiding 5,000 pounds of toluene. (The actual quantity is subtracted from the expected quantity to determine the amount avoided due to TUR activity.)

Mathematically,

$$Q_e = Q_1(PR_2) = (100,000 lb)(1.1) = 110,000 lb$$
 (7.3)

$$Q_n = Q_e - Q_2 = 110,000 lb - 105,000 lb = 5,000 lb$$
 (7.4)

$$R_n = 100 \frac{Q_n}{Q_e} = 100 \frac{5,000 \, lb}{110,000 \, lb} = 4.5\% \tag{7.5}$$

These formulas work only for an individual facility-chemical pair when an actual quantity is reported both in the first and second year and a PR is reported for the second year. However, the purpose of the methodology is to allow measurement of industry or state-wide progress, not individual facility progress. Since many of the universes include facility-chemical pairs that were not reported in two consecutive years, the methodology needs to account for missing data and needs to estimate the effect of missing data on the results.

In order to allow for missing data, the methodology calculated an 'average' production ratio based on the reported production ratios. The methodology weights the individual production ratios based on the total use reported for each production ratio.

The weighted average production ratio (PR_{WA}) was calculated by using all records within a given universe that had a first year quantity and a second year production ratio as follows:

$$PR_{wa} = \frac{\sum (PR_{2i})(TU_{1i})}{\sum TU_{1i}}$$
 (7.6)

where

i = all records in universe with a non-zero total use in year 1 and a PR > 0 in year 2

PR₂ = production ratio for an individual record in year 2

 TU_1 = total use (manufactured + processed + otherwise used) for individual record in year 1

Equation 7.6 gives an approximation of the average production ratio for all the records in the universe. Once the PR_{WA} has been calculated, it can be used to calculate the expected quantities for the entire universe:

$$Q_E = Q_{TI}(PR_{wa}) \tag{7.7}$$

and the normalized reduction or amount avoided is then:

$$Q_N = Q_E - Q_{T2} (7.8)$$

where:

 Q_N = total quantity avoided due to TUR, lb

Q_E = total quantity expected to be reported in the second year, lb

 Q_{T1} = total quantity actually reported in the first year, lb

 Q_{T2} = total quantity actually reported in the second year, lb

PR_{wA} = weighted average production ratio

Given as a percent,

$$R_N = 100 \frac{Q_E - Q_{T2}}{Q_E} = 100 \frac{Q_N}{Q_E} \tag{7.9}$$

These calculations are applied to the records in each universe to determine the progress made by each universe.

Normalized Quantity Change Example

1		First Year		Second Year		
Chemical Pair	Total Use	Byproduct	Total Use	Byproduct	PR	
1	100,000	50,000	105,000	50,000	1.1	
2	200,000	20,000	220,000	22,000	1.15	
3	50,000	10,000	50,000	7,000	0	

Table 7-1

For example, given a universe with only the three facility-chemical pairs shown in table 7-1, the actual and expected changes would be as follows: (note that facility-chemical pair 3 has a PR=0 and so is not included in the PR_{WA} calculations)

$$PR_{wa} = \frac{(1.1)(100,000lb) + (1.15)(200,000lb)}{(100,000lb + 200,000lb)} = 1.13$$
 (7.6)

The total byproduct in year 1, Q_1 , is 50,000 + 20,000 + 10,000 = 80,000 lb

The total byproduct in year 2, Q_2 , is 50,000 + 22,000 + 7,000 = 79,000 lb

Substituting these into Eq. 7-1 gives the actual change in byproduct produced:

$$\Delta Q = Q_1 - Q_2 = 80,000 lb - 79,000 lb = 1,000 lb \tag{7.1}$$

From Eq. 7.2, the percent reduction is:

$$R = 100 \frac{\Delta Q}{Q_1} = 100 \frac{1,000 \, lb}{80,000 \, lb} = 1.3\% \tag{7.2}$$

The expected byproduct reduction is given by Eq. 7.7:

$$Q_E = Q_1(PR_{WA}) = (80,000 \ lb)(1.13) = 90,400 \ lb$$
 (7.7)

The total byproduct avoided (Eq. 7.8) is:

$$Q_N = Q_E - Q_2 = 90,400 lb - 79,000 lb = 11,400 lb$$
 (7.8)

Finally, the percent byproduct avoided (Eq. 7.9) is:

$$R_N = 100 \frac{Q_N}{Q_E} = 100 \frac{11,400 \, lb}{90,400 \, lb} = 12.6\%$$
 (7.9)

For this exceptionally small universe, the actual reduction in byproduct was only 1,000 pounds from the first year to the second year, a little more than 1% of the total byproduct generated in the first year. However, when the numbers were normalized for changes in production, the change was more dramatic. The amount of byproduct avoided was 11,400 pounds or almost 13% of the amount expected.

This method builds in the assumption that production at the group of facilities for which PR=0 is approximately equal to the calculated weighted average production ratio. If that is not the case, then normalized progress will be over- or under-stated, depending on the actual production levels at those facilities. The magnitude of the effect of this missing production unit data will depend

on the magnitude of the missing information and actual production levels at those facilities. As discussed in Chapter 4, *Data Consistency Check*, analysis showed that in cases where the universe included many records, the amount of missing data was small enough for this metric to result in a reasonable estimate of progress. However, for small universes, errors and inconsistencies in the data resulted in questionable results.

7.2.1.2 Weighted average BRI

A calculation for a weighted average BRI was also developed for the different universes analyzed in this project. The calculation was similar to that for the weighted average PR but used a different set of data and different ranges. Because the BRI is based on the changes from a base year to a final year, the weighted average BRI was calculated for records with a common base year, not two consecutive years. Also, the records had to have valid BRIs. The calculation was weighted on total use:

$$BRI_{wa} = \frac{\sum (BRI_{2i})(TU_{1i})}{\sum TU_{1i}}$$
 (7.10)

where:

i = all records in universe with:

a non-zero total use in year 1,

chemical used in only one Production Unit in both years,

a non-zero BRI, and

base year = constant (i.e., all records with base year = 90 or all = 91, etc).

 BRI_2 = byproduct reduction index for an individual record in year 2

 TU_1 = total use (manufactured + processed + otherwise used) for individual record in year 1

Once the weighted average BRI was calculated for a universe, it could be used to calculate the expected change in the byproduct from one year to the next. As with the weighted average production ratio, the accuracy of this calculation depends on there being only a small amount of missing data. However, it turned out that this was not the case. Because this universe (Universe 2) contains less than one half of the quantities reported overall, data errors and anomalies have a significant effect on the results. Therefore, the weighted average BRI was not used to measure progress on the existing TURA data.

7.2.2 Qualitative Measures

A qualitative measure of TUR progress shows whether or not TUR activity is taking place but will not show how much. Qualitative measures help to validate the general accuracy of the

quantitative measures. The two qualitative measures included in this methodology were reported BRI/ERIs and reported TUR technique codes.

A positive BRI or ERI indicates that less byproduct or emissions are being generated per unit of product produced. The highest possible BRI or ERI is 100 and means no byproduct is being generated although product is still being produced. A negative BRI or ERI indicates that a product is being produced less efficiently, i.e., more byproduct is being generated per unit of product than in the base year. A qualitative measure of TUR is the change in the number or percent of production units with a positive BRI or ERI reported each year compared to the number of zero or negative BRIs and ERIs. Because reporting is not required in years when use is below the reporting threshold, this metric underestimates TUR activity. For example, the final BRI=100% for a production unit is typically only reported if the chemical is still being used in other production units over the reporting threshold.

The TUR technique codes are reported for a production unit if the BRI reported for the current year is 5 or more points greater than the BRI reported for the previous year. Another qualitative measure of TUR is the change in the number of TUR technique codes reported each year and the number or percent of production units for which they are reported.

Because of the issues around quality of these data, this study focused on "reality checking" the BRI and TUR technique codes, rather than analyzing them.

7.2.3 Universes and Subsets of Reported Data

Two approaches were taken in order to ensure that the measurements were dealing with consistent subsets of the data. The two approaches are similar in that both measure progress in data sets that are consistent over two or more years. Both approaches also result in several different measures that cannot be rigorously combined into a single result. The differences in the approaches are what years and which reporters were held constant in each set.

7.2.3.1 Universes of TURA Data

The first approach was to separate industries and chemicals into consistent sets or universes based on when they were first required to be reported as follows:

- 1990 Reportables EPCRA chemicals, SIC 20-39
- 1991 Reportables additional SICs, first third of CERCLA chemicals
- 1992 Reportables second third of CERCLA chemicals
- 1993 Reportables third third of CERCLA chemicals (only one year of data)

Progress for each universe could then be evaluated over whatever years worth of data were available for that universe.

This approach results in 3 different metrics, one for each set of reportables for the years 1990 to 1992:

- 1990 Reportables from 1990 to 1993,
- 1991 Reportables from 1991 to 1993, and
- 1992 Reportables from 1992 to 1993.

The measures for each of these universes cannot be combined in a rigorous way, because they each have a different base year. (See Figure 7-1.) ¹ These universes are discussed in more detail in Appendix I.

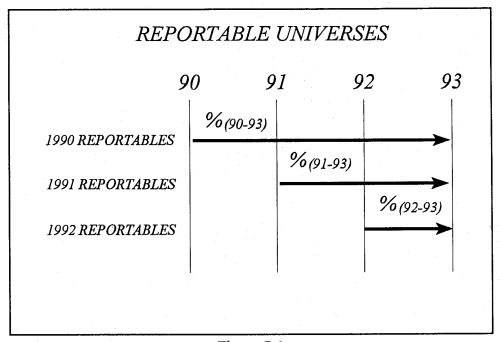


Figure 7-1

The second approach was to look at each of two successive years and look at a consistent set of industries and chemicals reportable in both years:

¹Because the 1993 Reportables have only been reported for one year, it is not possible to measure trends with those data. However, as additional years worth of data become available for 1993 Reportables, they will be added to the methodology.

- Everything reported in both 1990 and 1991,
- Everything reported in both 1991 and 1992, and
- Everything reported in both 1992 and 1993.

This approach results in three successive percent changes for each of the three sets of years, but again, they cannot be combined in a rigorous fashion because each has a different baseline quantity. (see figure 7-2)

Although there is no rigorous way to create a single percent change over four years for all reportable industries and chemicals, it is possible to look at the disaggregated percentages and get a feel for overall progress. If it is assumed that no TUR progress or any other changes took place in the years when industries or chemicals weren't reportable, then a weighted average of the three percentages can be calculated to give an approximate four year percent change. When the 1987 baseline work is complete, it should be possible to fill in missing years with estimates of progress to arrive at one measure for all years, all industries, and all chemicals.

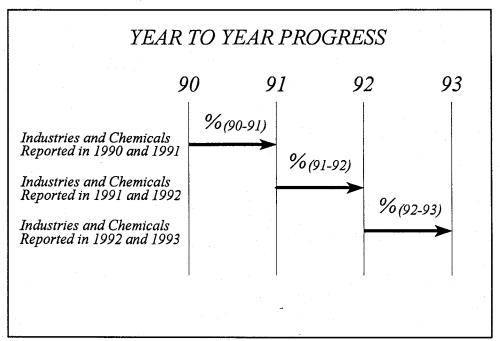


Figure 7-2

7.2.3.2 Progress by Subsets of Facilities

In addition to chemicals and facilities being phased in over several years, facilities may start or stop reporting chemicals because of changes in the quantity being used or the number of employees. When a facility or chemical drops out of or moves into the reporting universe, the change in quantity reported may hide changes related to TUR or may look like TUR is occurring

when it is not. The methodology also looked at changes in certain subsets or universes of the data designed to take some of these changes into account. The facility subsets that were used and what they were intended to show are described below. (see Appendix I)

- Facilities that reported in all four years. (Universe 4) Included in this universe were any facilities that reported at least one chemical in all four years (although not necessarily the same chemical in each year). Since these facilities reported in all four years, it is known that they did not go out of business during that time and that they met the employment thresholds and the chemical use threshold for at least one chemical. This universe provides some insight into the effect on the methodology results of facilities that move in and out of the reporting universe because they begin operation or cease operation or because they fail to meet the reporting requirements.
- Facilities that reported the same chemical in all four years. (Universe 3) Included in this universe were the records for each chemical that a facility reported in all four of the reporting years. Not included were chemicals that the facility reported for less than four years. This universe provides some insight into the effect on the methodology results of chemicals that move in and out of the reporting universe because a facility no longer uses them or uses them at levels below the reporting threshold. It also excludes chemicals that a facility starts to use part way through the four reporting years.
- Facilities that report the same chemical in only one constant production unit for all four years. (Universe 2) To be included in this universe, a facility must report a chemical in all four years, in all four years the chemical must be used in only one production unit, and that production unit does not change over the four years of reporting. This universe provides insight into the usefulness of the BRI and ERI in measuring progress at the facility level since if a chemical is used only in one production unit, the BRI for the production unit is the same as the BRI for the facility-wide use of that chemical.
- Few large chemical users versus many small chemical users. The few large toxic user facilities that account for the majority of the reported use quantities are compared to many smaller use facilities that account for a smaller percentage of the reported quantities. This comparison provides insight into the effect that a few companies have on the overall TUR progress.

7.2.3.3 Progress by Subsets of Chemicals and Industries

The methodology also allows a way to measure progress for specific chemicals or sets of chemicals and industries or groups of industries.

The following chemical groups were analyzed (see Appendix B2):

- Acids
- Metals
- Carcinogens
- Montreal Protocol (ozone-depleting chemicals)
- Swedish Chemical List (Geiser and Rossi, 1995)
- US EPA 33/50 Chemicals (US EPA, 1995, 1993 Toxics Release Inventory Public Data Release)
- · Chemicals which are mostly processed
- Chemicals which are mostly processed and otherwise used

The broad objective of chemical group analysis is to determine if certain groups are making more or less progress than others. This helps assistance programs target resources, and informs policy decisions. In addition, examining the data in smaller subsets often reveals inconsistencies which would not be noticed when calculating overall measures.

The industry progress analysis was based on a facility-wide SIC code assigned to each facility. Because most facilities have multiple 4-digit SIC codes which apply to them, and because accuracy and clear definition of 4-digit SIC codes are in question (Section 2.3.1), this study used a "user segment" SIC grouping. This is a draft experimental grouping of 2-, 3-, and 4-digit SIC codes prepared by the TURA User Segment Advisory Subcommittee. Groups are created which contain similar types of products manufactured or services provided. The level of detail chosen (e.g., 2-digit vs. 4-digit) depends on the number of Massachusetts companies in that category, and the uniqueness of their products, substrate materials and processes. Objectives are to group facilities which might be able to use similar TUR options and facilities for which TUR progress could be compared. It should be noted that the list of groupings used for this project (see Appendix C) is an early draft and has not undergone any review.

8 DATA ANALYSIS RESULTS

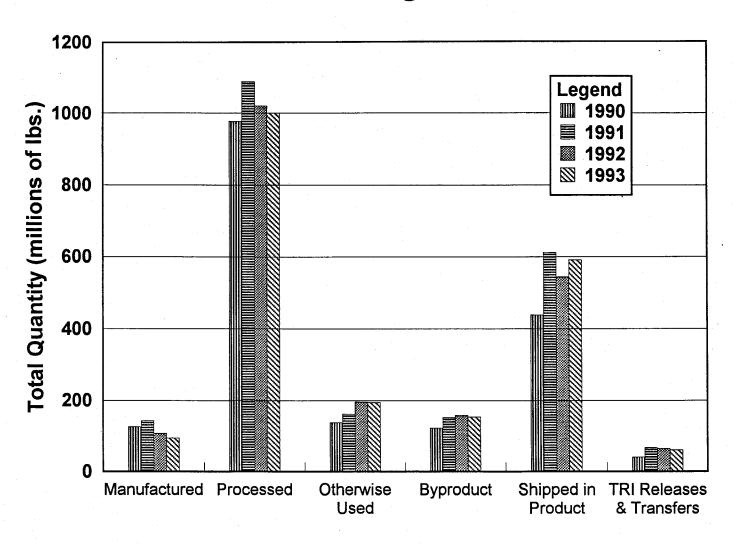
KEY POINTS

- Total reported quantities of toxic chemicals used, generated as byproduct, shipped in product, and released or transferred have increased over the period 1990 to 1993.
 However, this increase is misleading. It occurs because of the expanded list of industries required to report in 1991 and the phasing in of the CERCLA chemical list from 1991 to 1993.
- For a consistently reportable universe of industries and chemicals (excluding trade secret
 data) over the period 1990 to 1993 (i.e., 1990 Reportables or Universe 0), quantities of
 toxic chemicals used, generated as byproduct, and released or transferred have decreased,
 while quantities shipped in product have increased. Within TRI releases and transfers,
 releases to the environment and transfers to POTW's have decreased, while other off-site
 transfers have increased.
- The '1990 Reportables' group experienced an actual reduction in toxic chemical byproduct generated of 13% from 1990 to 1993 and an actual reduction of 17% in total toxic chemical use. When reductions are normalized to account for changes in production levels, there is a reduction of 14% in byproduct generated and 19% in total use.
- The 'top 20 use' facilities for 1990 represented less than 4% of the facilities reporting, but accounted for over 70% of the total use and 40% of the total byproduct reported in 1990.
- The 'top 20 use' facilities experienced an actual reduction in total toxic chemicals used of 23% (148 million lb) from 1990 to 1993. However, reported production ratios suggest that some of the decrease was due to decreased production levels. Consequently, their normalized reduction in total use was only 20% from 1990 to 1993. Similarly, 'top 20 user' facilities experienced an actual reduction in byproduct generated of 9% (3 million lb) and a normalized reduction of 5%.
- The 'non-top 20 use' facilities experienced only a 2% reduction in actual total toxic chemical use (4 million lb), but reported production ratios suggest increased production levels. Therefore, the 'non-top 20 toxic user' normalized reduction in total use was calculated at 17% for 1990 to 1993. Similarly, the actual reduction in byproduct generated by the 'non-top 20 user' facilities was 15%, while the normalized reduction was 28%.
- Facilities using and reporting the same chemicals consistently over 4 years experienced a reduction in toxic chemical byproduct generation of approximately 8%, compared with a 13% reduction for all facilities. This indicates that chemicals dropping below or rising above the reporting threshold may overstate actual progress by as much as 5%, depending on what their actual quantities are in the years in which they are not reported.

8.1 Introduction

The complexity of the TURA data makes it difficult to provide a single, simple answer to the question: How much progress has been made in Massachusetts in toxics use reduction? Figure 8-1 presents total data for six quantities reported by TURA filers: manufactured, processed, otherwise used, generated byproduct, shipped in product, and TRI releases and transfers (emissions). Based on the total amounts reported each year, there is no TUR progress evident. Although the reported quantity manufactured has decreased, all other quantities reported in 1993 are greater than the 1990 reported quantities. Some, such as 'Shipped in Product', are significantly higher. Table 8-1 shows the actual quantities involved.

The data show an apparent increase in reported quantities. However, what Figure 8-1 does not show is how much of this trend is due to the expanded list of industries required to report in 1991 and the phasing in of the CERCLA chemical list from 1991 to 1993. The chemicals and industries subject to TURA reporting requirements in 1990 through 1993 are as follows:


- 1990 EPCRA chemicals, facilities in the manufacturing SIC codes (20 to 39),
- 1991 1990 Reportables plus the 1st third of CERCLA chemicals and facilities in SICs 10-14, 40, 44-51, 72-73, 75-76,
- 1992 1990 and 1991 Reportables plus 2nd third of CERCLA chemicals, and
- 1993 1990, 1991 and 1992 Reportables plus 3rd third of CERCLA chemicals.

These changes in reporting requirements complicate the task of measuring progress because there is no information for years prior to a chemical or facility's first required reporting year. Figure 8-2 shows this graphically. The lightest shaded area is the portion of the data prior to the first required reporting year. This portion will have to be estimated to establish a common 1987 baseline. The darkest portion is what has actually been reported to date and therefore can be analyzed. The unshaded portion will be reported in the future. As described in Chapter 4, work is being done to establish an estimated 1987 baseline for the TURA data. However, the results of that portion of the project are not yet available. This chapter only reports on progress from the point a facility or chemical was first required to report.

8.2 Universes of TURA Data

Because of the lack of a complete data set and because of inconsistencies between the available sets in terms of when data first was reported, progress can only be measured for subsets of the data, which are referred to in this report as universes. Detailed information about these universes is given in Appendices I and J. Briefly, the universes for which progress has been reviewed are as follows:

All TURA - including Trade Secret

	Manufactured	Processed	Otherwise Used	Byproduct	Shipped in Product	TRI Releases & Transfers
1990	126.	977.	138.	123.	438.	40.4
1991	143.	1,088.	162.	152.	611.	66.5
1992	108.	1,021.	196.	158.	544.	64.7
1993	94.4	1,000.	194.	154.	591.	60.8

Universe: All TURA including Trade Secret data Quantities in Millions of lbs.

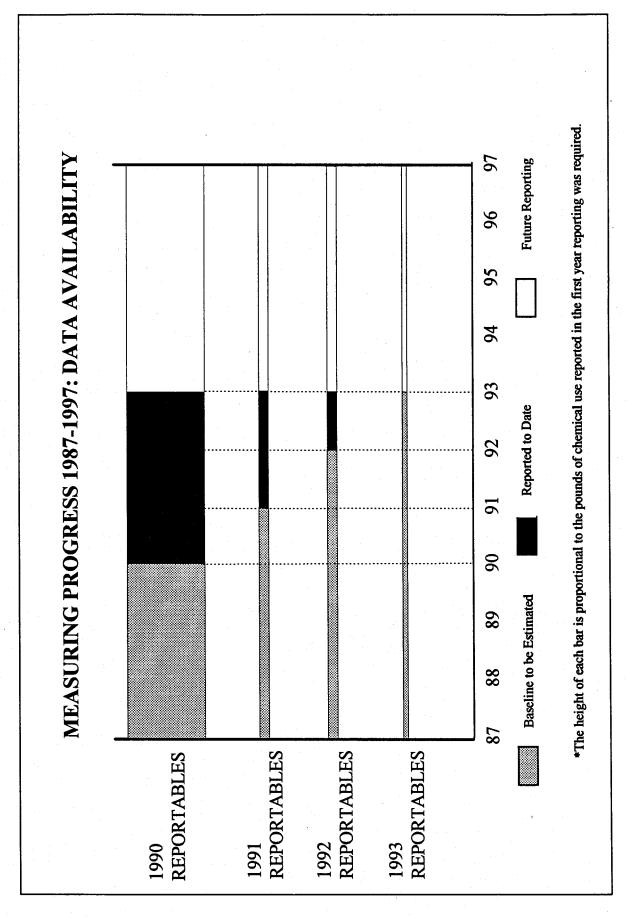


Figure: 8-2

Total Chemical Amounts Reported For All Chemicals and Facilities Reporting on Form S Universe: All TURA (All Quantities in Pounds)

Non-Trade Secret Amounts	1990	1991	1992	1993	% Reduction 90-93
Manufactured	25,806,774	15,257,099	20,405,477	19,862,748	+23.0
Processed	764,961,043	845,970,088	821,773,637	806,688,917	-5.5
Otherwise Used	136,380,491	151,644,838	191,439,678	188,488,448	-38.2
Total Use	927,148,308	1,012,872,025	1,033,618,792	1,015,040,113	-9.5
Generated Byproduct	114,214,580	135,144,852	144,588,903	137,052,977	-20.0
Shipped in/as product	329,044,771	453,459,967	432,253,186	483,678,133	-47.0
Releases & Transfers	36,222,140	55,187,355	59,190,876	54,695,117	-51.0
Trade Secret	1990	1991	1992	1993	% Reduction
Amounts					90-93

Trade Secret Amounts	1990	1991	1992	1993	% Reduction 90-93
Manufactured	100,658,715	127,736,507	88,017,207	74,493,372	+26.0
Processed	212,497,848	242,240,098	199,261,702	193,454,667	+9.0
Otherwise Used	1,222,302	10,721,274	4,820,922	5,904,030	-38.3
Total Use	314,378,865	380,697,879	292,099,831	273,852,069	+12.9
Generated Byproduct	8,567,796	16,502,460	13,082,538	16,509,676	-92.7
Shipped in/as prod.	108,544,853	157,467,467	111,473,106	107,081,883	+1.35
Releases & Transfers	4,209,826	11,346,493	5,555,383	6,122,964	-92.

Totals: Non-Trade Secret+Trade Secret	1990	1991	1992	1993	% Reduction 90-93
Manufactured	126,465,489	142,993,606	108,422,684	94,356,120	+25.4
Processed	977,458,891	1,088,210,186	1,021,035,339	1,000,143,584	-2.3
Otherwise Used	137,602,793	162,366,112	196,260,600	194,392,478	-41.3
Total Use	1,241,527,173	1,393,569,904	1,325,718,623	1,288,892,182	-3.8
Generated Byproduct	122,782,376	151,647,312	157,671,441	153,562,653	-25.0
Shipped in/as prod.	437,589,624	610,927,434	543,726,292	590,760,016	-35.0
Releases & Transfers	40,431,966	66,533,848	64,746,259	60,818,081	-50.4

Table 8-1 Total Chemical Amounts Reported for All TURA

- All TURA with Trade Secret This universe includes all reported data for all years, all chemicals, and all facilities including information claimed trade secret. Only total quantities were provided by DEP for the trade secret information so this universe can only be studied on a gross level.
- All TURA excluding Trade Secret The largest universe of data available for study in the extract files. It includes all chemical records that were in the DEP extract files with the exception of duplicate key records (less than 3 million pounds in all years). This universe shows the total amount in the extract files but cannot be used for measuring progress because of the inconsistencies described in prior chapters such as trade secret inconsistencies.
- Universe 0 1990 Reportables This universe includes records for any chemical and facility that would have been required to report in 1990, regardless of whether or not the facility actually reported the chemical in 1990. It includes only 1990 Reportables, i.e., EPCRA chemicals and manufacturing facilities. It is the largest consistent universe available for study in the extract files. It is used as the basis for most of the other universes reported on in this chapter.
- Universe 1 Complete Production Unit This universe is a subset of Universe 0. It includes only 1990 Reportable chemicals and facilities but excludes the quantities for any record that was incomplete (missing production unit (e.g., BRI) information). It was developed to measure progress for specific industries and for any analysis which requires production unit level information.
- Universe 2 Consistent Single Production Units This universe is a subset of Universe 1. It includes any 1990 Reportables for which the same chemical was used by a facility in only one production unit consistently over all four years. Where only one production unit is reported, the production unit BRI and ERI are the same as the facility-wide chemical BRI and ERI. These facility/chemical² records can be used to generate an aggregated BRI, which is a production normalized measure of progress. This universe contains 40% of the facilities reporting annually, one third of the total use, and 20% of the byproduct generated. Because of the small sample size and the sensitivity of the methodology to data errors and anomalies, this universe did not prove to be very useful for measuring progress with the existing TURA data. It may be more useful when data issues are resolved.

¹The chemicals claimed trade secret included 1990, 1991, and 1992 Reportables. Since the only information available about these chemicals was an aggregated total, it was not possible to analyze progress for these chemicals. Universe 0 was created, in part, by taking out records of chemicals that were reported in one year but claimed trade secret in subsequent years. This prevented the results from being skewed by inconsistent reporting. For example, if a facility reported 25 million pounds of a chemical in 1990 but claimed the chemical trade secret in 91-93, the extract file data would include only the 1990 data. This would give the appearance of a 25 million pound decrease from 1990 to 1991 when in fact it is unknown what actually happened.

²Facility/chemical indicates a given facility reporting on a particular chemical.

- Universe 3 Consistent Chemical This universe is a subset of Universe 0 and includes any 1990 Reportables where the same chemical was reported by a facility in every year from 1990 to 1993. This universe provides an understanding of the effect of changes in production units on facility chemical reporting. It also provides a universe where chemicals dropping below and rising above the threshold will not distort progress. The universe contains over 65% of the facilities reporting annually, and over 60% of the total use and byproduct generated.
- Universe 4 Consistent Facility This universe is a subset of Universe 0. It includes all 1990 Reportable chemicals reported by a facility that reported at least one 1990 Reportable chemical in all four years, 1990-1993. By only looking at facilities that reported consistently, this universe allowed testing whether facility movement into and out of the reporting universe affected the overall trends. This universe includes over 65% of the facilities annually reporting and over 80% of the total use and generated byproduct.
- Universe 5 1990 to 1991 Year-to-Year Comparison This universe is a subset of Universe 0 and includes 1990 Reportables that were *actually* reported in both 1990 and 1991. Since it includes only records that were consistently reported in both 1990 and 1991, it provides a potentially more accurate indication of production normalized change from 1990 to 1991, by using a weighted average production ratio. It can only be used to measure change from 1990 to 1991.
- Universe 6 1991 to 1992 Year-to-Year Comparison This universe includes all 1990 and 1991 Reportable chemicals and facilities that were *actually* reported in both 1991 and 1992. It provides a broader indication of change from 1991 to 1992 than Universe 0, by including 1991 Reportables. However, it can only be used to measure changes between 1991 and 1992.
- Universe 7 1992 to 1993 Year-to-Year Comparisons- This universe includes all 1990, 1991, and 1992 Reportable chemicals and facilities that were *actually* reported in both 1992 and 1993. It provides a broader indication of change from 1992 to 1993 by including 1990, 1991 and 1992 Reportables, but can only be used to measure changes between 1992 and 1993.
- Universe 8 1991 Reportables Includes all the industries and chemicals first reportable in 1991. It provides a measure of the progress for these chemicals and industries from 1991 to 1993. It can only be used to measure progress from 1991 to 1993.
- Universe 9 1992 Reportables Includes all chemicals first reportable in 1992. It provides a measure of the progress for these chemicals from 1992 to 1993. It can only be used to measure progress from 1992 to 1993.

Figure 8-3 shows a diagram of how these universes relate to each other. For a more complete description of what was included and excluded from each universe as well as the total quantities involved, see Appendix I. None of the numbered universes include records of any chemicals that were ever claimed trade secret by a facility.

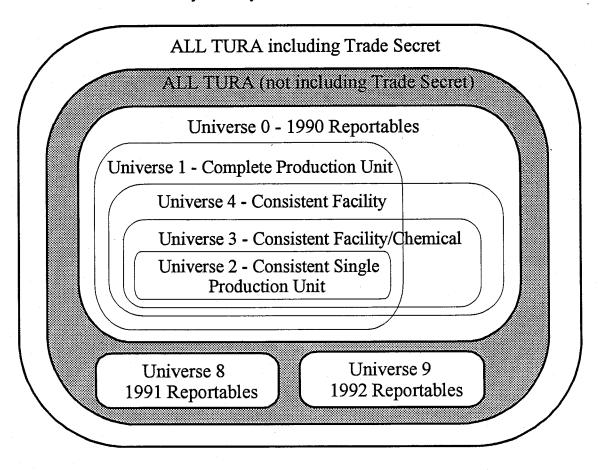


Figure 8-3 Relationships Between Specific Universes

Figures 8-4, 8-5 and 8-6 shows how the byproduct, total use³, and TRI Releases and Transfers compare for several of these universes. All the shaded areas together represent the 'All TURA with Trade Secret' universe.

As seen in Figure 8-4, for all reported chemicals and facilities, byproduct increased by 25% from 1990 to 1993. However, the individual layers of the graph show why there was an increase. 1990 Reportable chemicals and facilities accounted for 93% of the reported byproduct in 1990. The byproducts for these chemicals and facilities actually declined by 12.5% from 1990 to 1993. The

³ Total use is the sum of the amounts manufactured, processed and otherwise used.

apparent increase is due to the additional reportables added in 1991 through 1993. By 1993, the 1990 Reportables only accounted for 63% of all byproducts reported.

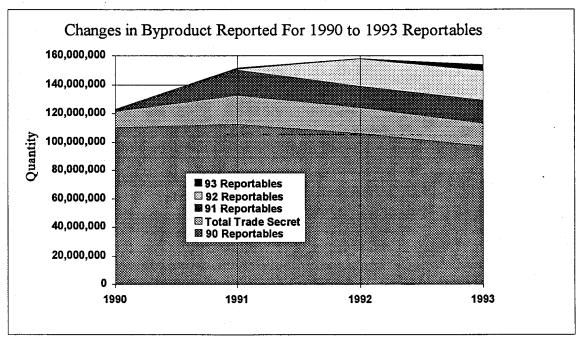


Figure 8-4

Total use, shown in Figure 8-5, also appears to increase because of changing reporting requirements. The quantity of total toxic chemical use reported by all TURA filers increased by 13% from 1990 to 1991 and then decreased slightly in 1992 and 1993. The overall change is a 4% increase from 1990 to 1993. However, the increase was due to added reportables in 1991 through 1993. The total use reported for the 1990 Reportable universe actually declined by 17% from 1990 to 1993⁴. It is the additional quantities due to expanded reporting requirements that cause the appearance of an increase.

TRI releases and transfers also increased by almost half from 1990 to 1993 although in this case there are two reasons for the increase. Some of the increase is due to the expanded list of facilities and chemicals in 1991 through 1993. The additional increase is due to the TRI reporting guidelines for off-site transfers, which changed in 1991 to include the reporting of more types of off-site transfers.⁵

⁴ Because no more detailed information is available for chemicals claimed trade secret, from this point on, all references to data excludes any chemicals that were ever claimed trade secret unless otherwise noted.

⁵ In 1991, off-site transfers for energy recovery and recycling became reportable as "transfers to other off-site locations" under TRI. Because of this change, for the rest of this document, changes in TRI Releases and Transfers are measured from 1991 in order to keep the universe of reported quantities the same.

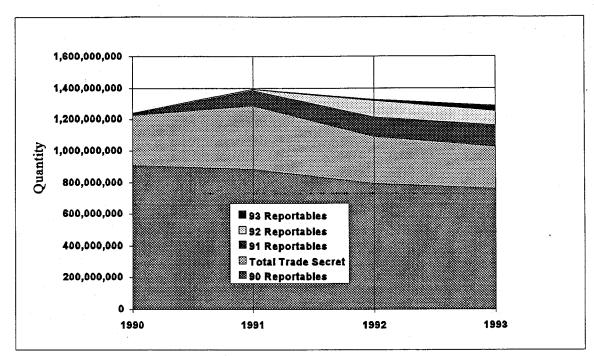
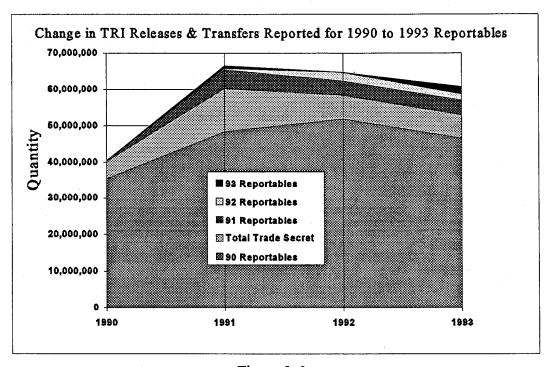
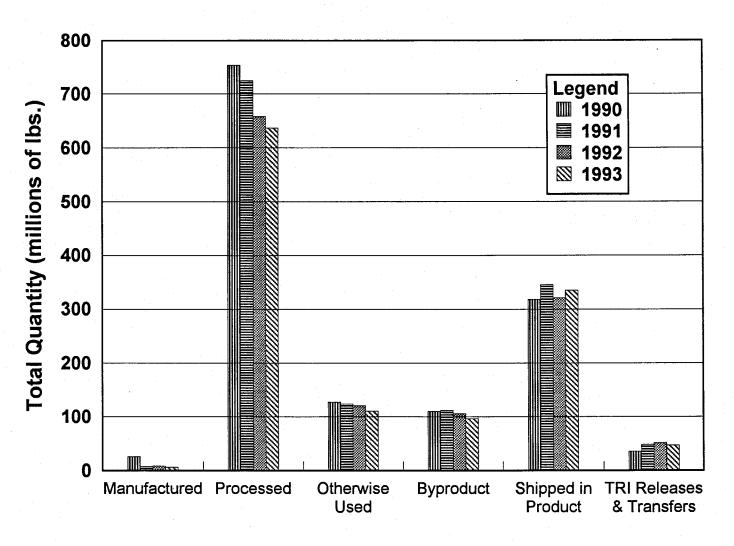


Figure 8-5




Figure 8-6

In 1990, the 1990 Reportables accounted for 90% of the byproduct generated (Figure 8-4), 73% of the quantity reported as used (manufactured, processed, or otherwise used) (Figure 8-5), and 88% of the releases and transfers (Figure 8-6). Because more chemicals and facilities were required to report in later years, by 1993, the 1990 Reportables accounted for only 63% of byproduct, 59% of total use, and 77% of releases and transfers reported in 1993. The 1991 Reportables accounted for 10% of the byproduct and total use reported and 7% of the releases and transfers reported in 1993. The 1992 Reportables accounted for 13% of the byproduct, 7% of the total use, and 3% of the TRI releases and transfers reported in 1993.

Note that some facilities reported chemicals before they were required to, i.e., 1991 Reportables were reported in 1990, 1992 Reportables were reported in 1990 and 1991. These represent a very small fraction of the reported quantities and were not included in any of the progress calculations.

Figure 8-7 shows specific quantities reported for Universe 0. This is the largest consistent set of chemicals and industries available in the extract files. The observed trends are significantly different than those for 'All TURA' shown in Figure 8-1. Where Figure 8-1 showed almost all quantities increasing from 1990 to 1993, Figure 8-7 shows that, for the 1990 Reportables, with the exception of shipped in or as product and releases and transfers (see footnote 5, pg. 8-9), the quantities declined. Table 8-2 details the quantities represented in Figure 8-7.

1990 Reportables Universe 0

	Manufactured	Processed	Otherwise Used	Byproduct	Shipped in Product	TRI Releases & Transfers
1990	25.5	753.	127.	110.	318.	35.4
1991	7.44	724.	124.	112.	345.	48.4
1992	8.5	658.	121.	106.	321.	51.7
1993	6.32	637.	111.	97.	335.	46.6

Universe-0: 1990 Reportable Chemicals and SIC's, excluding Trade Secret data Quantities in Millions of lbs.

Total Chemical Amounts Reported on Form S and R: Universe 0 1990 Reportable Chemicals and Facilities (all quantities in pounds)

	1990 Reportable Chemicals and Facilities (all quantities in pounds)								
TURA Information	1990	1991	1992	1993	% Reduction 90-93.				
Manufactured	25,531,959	7,444,207	8,500,285	6,322,692	+75.2				
Processed	753,479,769	723,791,014	658,024,794	637,016,428	+15.4				
Otherwise Used	126,948,628	124,461,342	121,074,364	111,014,677	+13.0				
Total Use	905,960,356	855,696,563	787,599,443	754,353,797	+17.0				
Generated Byproduct	110,369,343	112,328,998	105,833,339	96,552,630	+12.5				
Shipped in/as product	318,173,895	344,760,629	320,858,622	334,632,394	-5.2				
TRI Information	1990	1991	1992	1993	% Reduction 90-93				
Total Releases	20,723,828	17,010,102	14,614,308	11,320,847	+45.4				
Transfers to POTWs	3,188,173	1,708,104	1,864,793	1,479,757	+53.6				
Other Transfers Off-site ⁶	11,486,742	29,685,722	35,249,554	33,774,797	-13.8				
Total Releases and Transfers ⁶	35,398,743	48,403,928	51,728,655	46,575,401	3.8				
General Information	1990	1991	1992	1993	% Reduction 90-93				
Number of facilities	663	641	629	572	+13.7				
27 1 0									

General Information	1990	1991	1992	1993	% Reduction 90-93
Number of facilities	663	641	629	572	+13.7
Number of chemicals	110	109	110	101	+8.2
Number of records	1,985	1,933	1,898	1,697	+14.5

Table 8-2 Total Chemical Amounts Reported for 1990 Reportables

⁶ Off-site transfers to energy recovery and recycling were not reportable until 1991. Therefore, the percent reduction is calculated from 1991 - 1993.

8.3 Normalization

Although the byproduct and other quantities for the 1990 Reportables showed a decrease, there is no indication of the reasons for the change. Changes could be due to changes in production or TUR efforts. To determine how much of the change is due to toxics use reduction, the quantities were normalized as described in the methodology section using a weighted average production ratio (PR_{wa}) calculated for a number of different universes. Table 8-3 shows the PR_{wa} for several of the universes for each of the years it was calculated. Note that the production ratio describes the change in production level from the previous year (e.g., 1991 PR represents the change from 1990 to 1991). As can be seen from Table 8-3, reported-production levels declined from 1990 to 1992 and then increased from 1992 to 1993. By 1993, overall production levels were above the 1990 production levels in most universes. These PR_{wa} were used with the actual quantities reported to calculate an expected quantity (for byproduct, total use, etc.). Appendix I includes the PR_{wa} for all the universes as well as the percent of each universe's total use that was used to calculate the PR_{wa}.

	1991	1992	1993
1990 Reportables (Universe 0)	0.972	0.991	1.061
1991 Reportables (Universe 8)		0.945	1.108
1992 Reportables (Universe 9)			1.055
Reported in 1990 and 1991 (Universe 5)	0.972		
Reported in 1991 and 1992 (Universe 6)		0.987	
Reported in 1992 and 1993 (Universe 7)			1.065

Table 8-3 Weighted Average Production Ratios

Figure 8-8 shows the general format of the charts used in this report to present the results of the methodology. Each chart shows progress for a different quantity (byproduct, total use, etc.) For each quantity, the progress made by each group of reportable chemicals (1990 Reportables, 1991 Reportables, and 1992 Reportables) is shown is a separate line graph. The groups are shown separately to indicate that the quantities cannot be combined since there is no common baseline year from which to measure progress.

The general format of each graph is a line graph showing the actual and normalized change from the beginning year to the ending year. The solid (red) line represents the quantities actually reported for a particular universe. The dotted (blue) line represents the expected quantity calculated from the actual quantity and the PR_{wa} . The actual percent reduction is the difference between the quantity reported in the first year and the final year as a percent of the first year quantity. If the quantity reported in the final year is greater than the quantity reported in the first

year, the result is negative. This indicates that there was an increase instead of a reduction in the reported quantity.

The normalized reduction is the difference between what was actually reported in the final year compared with what would have been expected in the final year based on changes in production level (PR_{wa}). This is the same as the percent avoided due to TUR. If the final year actual quantity is greater than the final year expected quantity, then the result is negative. In that case, instead of a percent avoided or percent normalized reduction, there is a normalized increase over expected quantities. The next section describes the results of these calculations shown in Figures 8-9 through 8-15.

8.4 Overall Progress - Actual and Normalized

8.4.1 1990, 1991 and 1992 Reportables

The largest subsets of the data for which progress can be measured are the 1990 Reportables (Universe 0), the 1991 Reportables (Universe 8), and the 1992 Reportables (Universe 9). Since there is only one year of data available for chemicals first required to be reported in 1993, those were not analyzed in this study.

As shown in Figure 8-9, the 1990 Reportables showed a reduction in byproduct generated. The byproduct reported declined from 110 million pounds in 1990 to 97 million pounds in 1993, a decrease of 13 million pounds. This is an actual reduction in byproduct of 13%. The byproduct for 1991 Reportables decreased by 2 million pounds, or 10%, from 17.6 million pounds in 1991 to 15.9 million pounds in 1993. Unlike the 1990 and 1991 Reportables, the 1992 Reportables showed an actual increase in byproduct generated of 2 million pounds or 7% from 1992 to 1993. Overall, the decrease of 1990 and 1991 Reportables outweighs the increase in 1992 Reportables for 1990 to 1993 progress.

Figure 8-9 also shows the results of normalizing the byproduct reported based on the weighted average production ratio for each of the universes. For the 1990 Reportables, there was a 14% normalized reduction in byproduct, that is, the byproduct avoided due to TUR was 16 million pounds. For the 1991 Reportables, the avoided byproduct was 2.6 million pounds, also 14%. The 1992 Reportables showed an increase in the byproduct of 0.5 million pounds more than the expected, a 2% increase⁶. Again, due to the relative magnitude of these three universes, the overall picture shows overall TUR progress in reducing byproduct from 1990 to 1993.

⁶ As noted previously, the expected quantity is the amount reported in one year multiplied by the amount that the production level changed in the following year. If production goes up, reported quantities are expected to go up proportionately. If production goes down, reported quantities are expected to go down proportionately.

As seen in Figure 8-10, the 1990 Reportables also showed a reduction in total chemical use. The total use reported declined from 906 million pounds in 1990 to 754 million pounds in 1993, a decrease of 152 million pounds. This is an actual reduction of 17% for total chemical use. The 1991 Reportables increased by 30 million pounds, or 30%, from 101 million pounds in 1991 to 131 million pounds in 1993. The 1992 Reportables showed a reduction of 14 million pounds in total chemical use from 105 million pounds in 1992 to 91 million pounds in 1993, a 13% actual decrease in total use. Overall, the decrease of 1990 and 1992 Reportables outweighs the increase in 1991 Reportables for the 1990 to 1993 progress.

Figure 8-11 shows the change in the quantities shipped in or-as product for the 1990, 1991, and 1992 Reportables. Unlike byproduct and total use, the amount of chemical reported shipped in product increased for all three groups of reportable chemicals. 1990 Reportables, which make up the majority of the chemicals reported shipped, showed an actual increase of 5% from 1990 to 1993. The 1991 and 1992 Reportables showed increases of 70% and 10% respectively, although the total quantity reported was much less than for the 1990 Reportables. Because the production levels increased from 1990 to 1993, the normalized increases were not as great, 3% for 1990 Reportables and 62% and 5% for 1991 and 1992 Reportables, respectively.

Figure 8-12 shows the change in TRI releases and transfers for the 1990, 1991 and 1992 Reportables. The method of reporting TRI transfers changed from 1990 to 1991 and resulted in a large increase in the quantity reported. In order to avoid misrepresenting the changes, the TRI releases and transfers were only measured from 1991 to 1993. The 1990 Reportables showed an actual decrease in releases and transfers of 2 million pounds or 4% from 1991 to 1993. The normalized percent avoided was 4 million pounds or 8%. The 1991 Reportables showed an actual decrease of 1 million pounds or 18% from 1991 to 1993. The normalized percent avoided was 22% or 1 million pounds. The 1992 Reportables showed an actual decrease of 0.5 million pounds or 23% from 1992 to 1993. This was a normalized decrease in expected transfers and releases of 26% or 0.6 million pounds.

Figures 8-13, 8-14, and 8-15 break down TRI releases and transfers to show the actual and normalized changes for TRI transfers to publicly owned treatment works (POTW), other transfers off-site, and releases to the environment. The 1990 Reportable transfers to POTWs and releases to the environment declined sharply from 1990 to 1993 with actual reductions of 54% for POTW transfers and 45% actual reductions of releases to the environment. When normalized for production levels, the results are 55% and 46% respectively. Other transfers off-site, however, increased significantly from 1991 to 1993. Actual increases for 1990, 1991 and 1992 Reportables were 14%, 17%, and 7%, respectively. Normalized increases for 1990, 1991 and 1992 Reportables were 8%, 11%, and 1%, respectively.

KEY TO FIGURES 8-9 to 8-15



Figure 8-8

MA TURA BYPRODUCT GENERATED

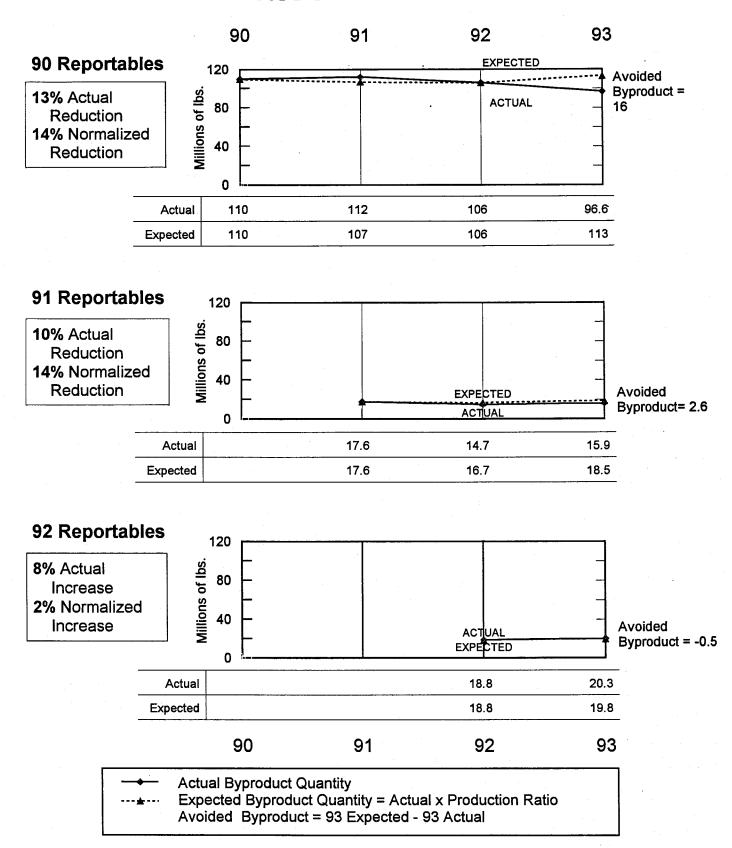


Figure 8-9

MA TURA TOTAL USE

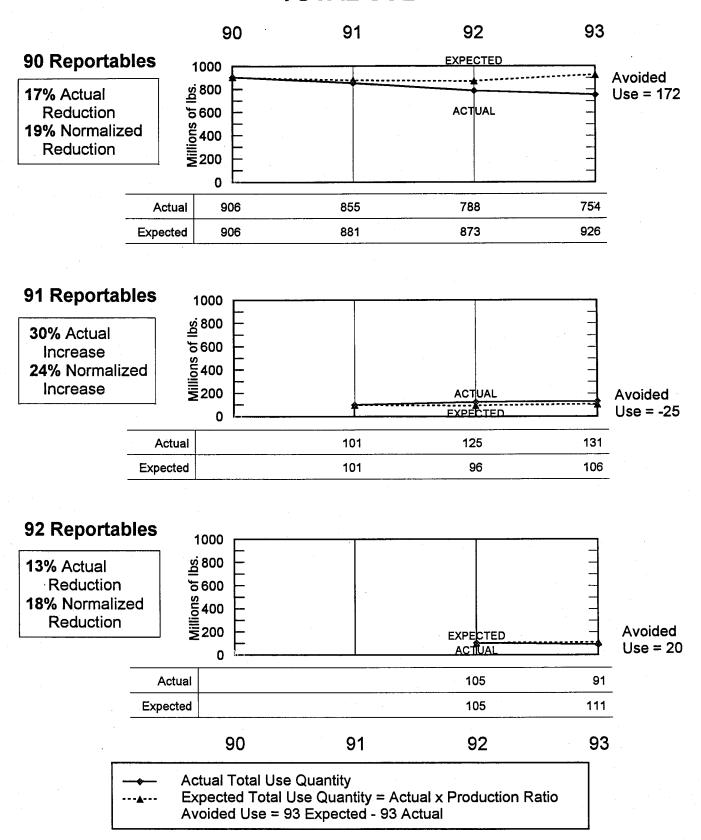


Figure 8-10

MA TURA SHIPPED IN OR AS PRODUCT

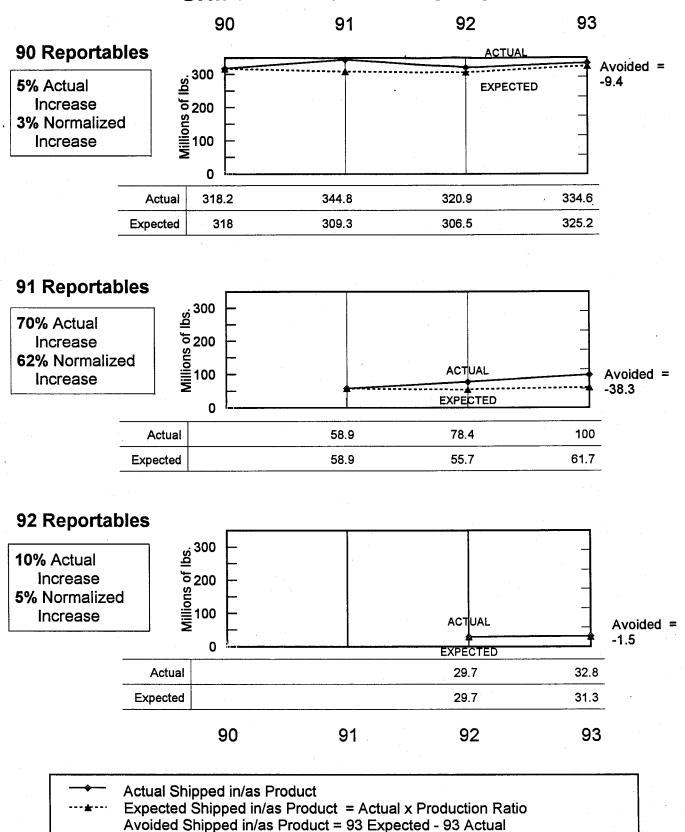


Figure 8-11

MA TURA TRI RELEASES & TRANSFERS

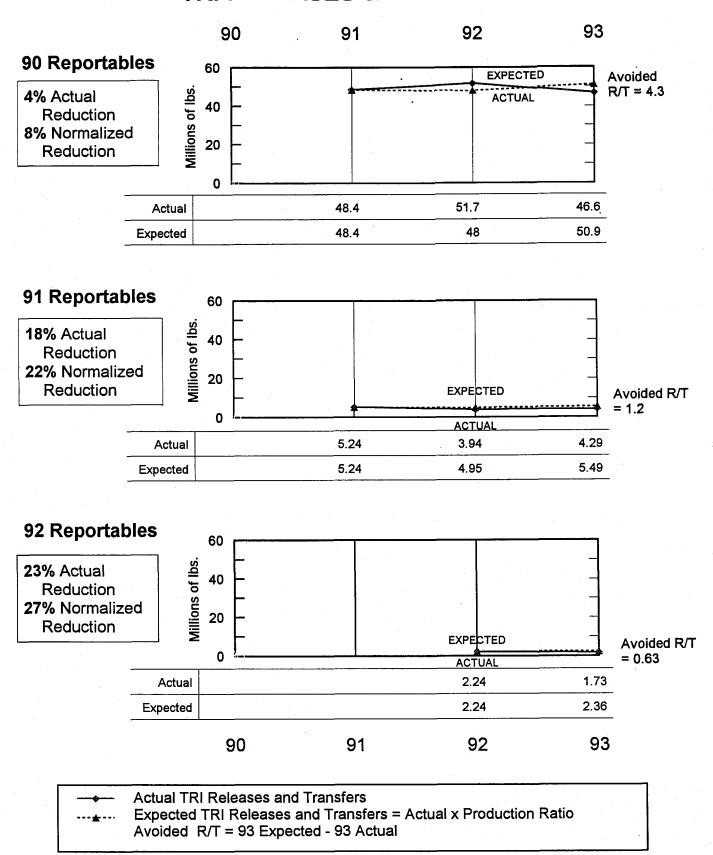


Figure 8-12

MA TURA TRI TRANSFERS TO POTW's

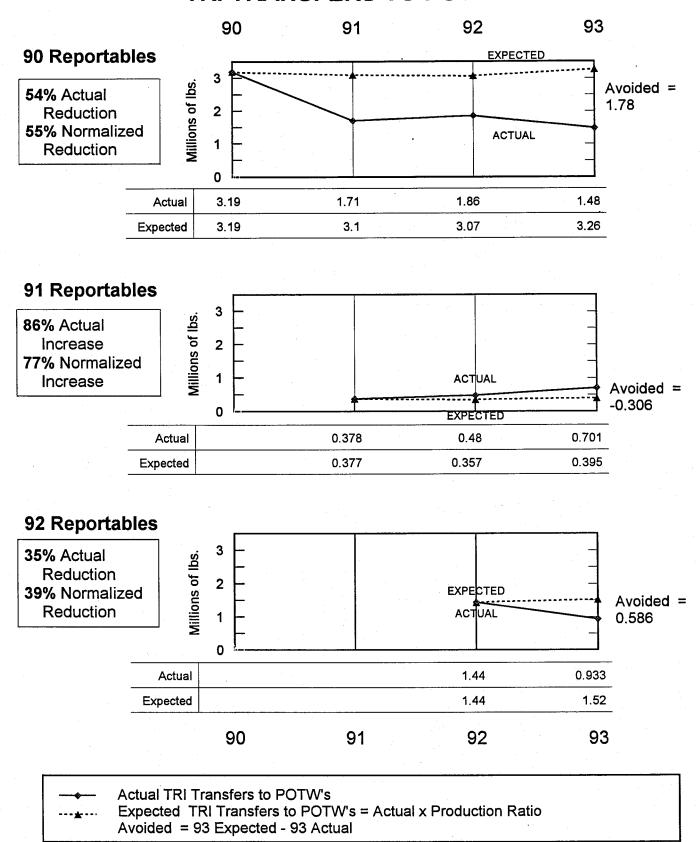


Figure 8-13

MA TURA TRI OFF-SITE TRANSFERS

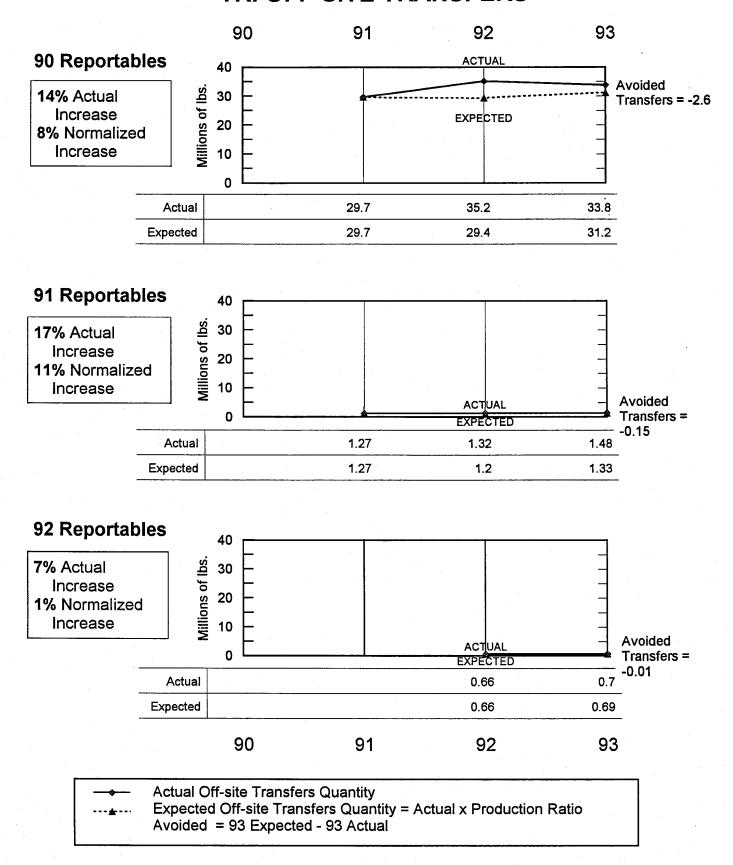


Figure 8-14

MA TURA TRI RELEASES TO ENVIRONMENT

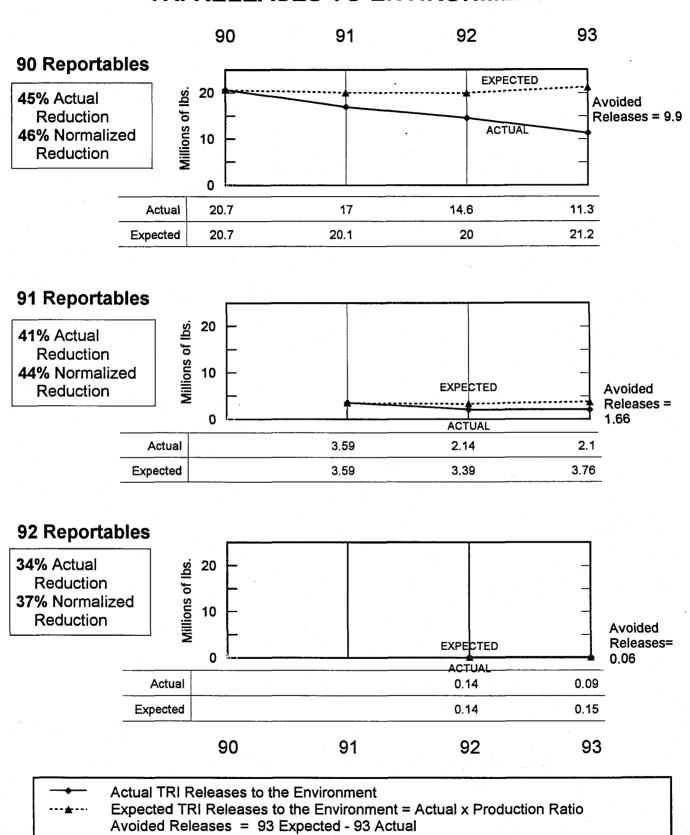


Figure 8-15

8.4.2 Year to Year Change

The preceding eight figures, Figures 8-8 through 8-15, demonstrate one method for measuring progress for a constantly changing group of facilities and chemicals, based on the year that reporting was first required. For each universe, the charts in figures 8-9 to 8-15 show progress from the first year that reporting was required through 1993.

The next set of figures demonstrate a second method for measuring progress for constantly changing groups of facilities and chemicals. This method measures progress from one year to the next and includes in the measurement all the facilities and chemicals that actually reported in both years. Figure 8-16 is a sample of how to interpret the following three charts. Each chart shows progress for three different two year intervals: 1990-1991, 1991-1992, and 1992-1993. The first section on each chart is for chemicals that facilities reported in *both* 1990 and 1991 (Universe 5). The second section on each chart is for chemicals that facilities reported in *both* 1991 and 1992 (Universe 6). The third section is for chemicals that facilities reported in *both* 1992 and 1993 (Universe 7). Because each year-to-year comparison has a different baseline, the percent reductions cannot be mathematically combined into one percent change for 1990 to 1993.

Figure 8-17 through 8-19 show changes in quantities from year-to-year for byproduct, total use, and TRI releases and transfers. Byproduct (Figure 8-17) remained constant from 1990 to 1991 but then had 7% and 4% decreases in actual byproduct reported in 1992 and 1993. The normalized byproduct reduction from 1992 to 1993 was 10%.

The total use (Figure 8-18) showed a continuous decrease from 1990 to 1993, both for actual and normalized quantities reported. Changes in releases and transfers were calculated using 1991 as the starting year because of changes in the reporting requirements. From 1991 to 1992, combined releases and transfers (Figure 8-19) increase, both actual quantities and quantities normalized for production. From 1992 to 1993, however, releases and transfers had a decrease of 9% actual and 15% normalized.

KEY TO FIGURES 8-17 to 8-19 TOTAL QUANTITY - YEAR TO YEAR CHANGE

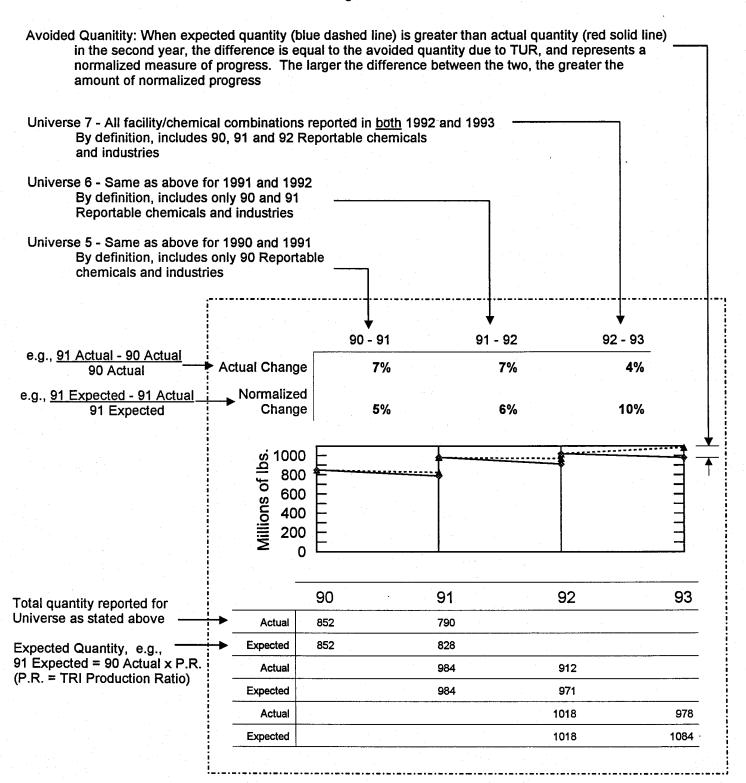
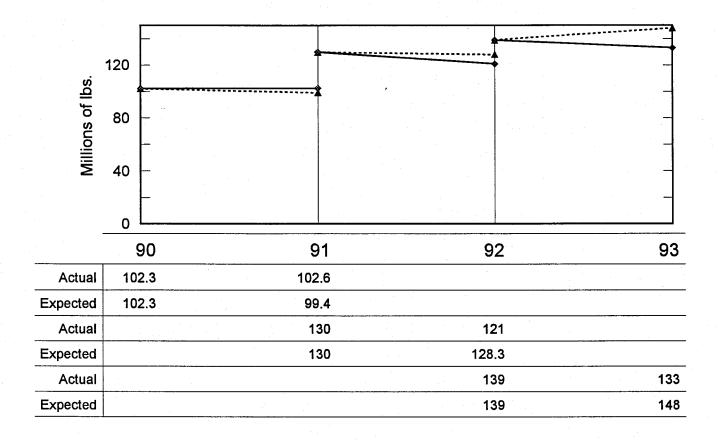
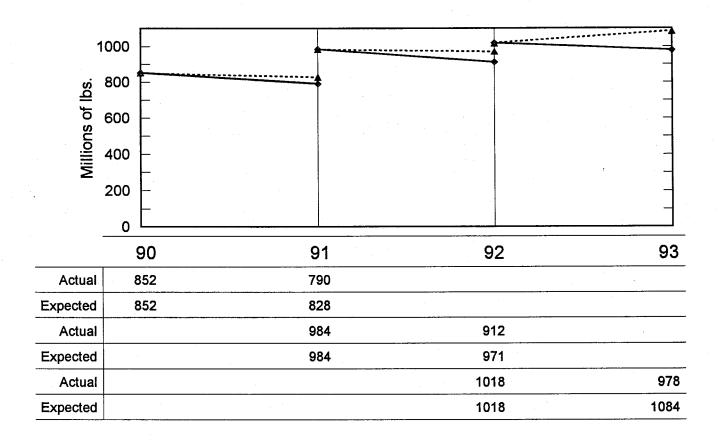


Figure 8-16

BYPRODUCT - YEAR TO YEAR CHANGE

	90 - 91	91 - 92	92 - 93
Actual Change	0%	7%	4%
Normalized Change	-3%	6%	10%

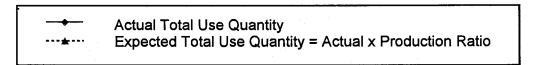
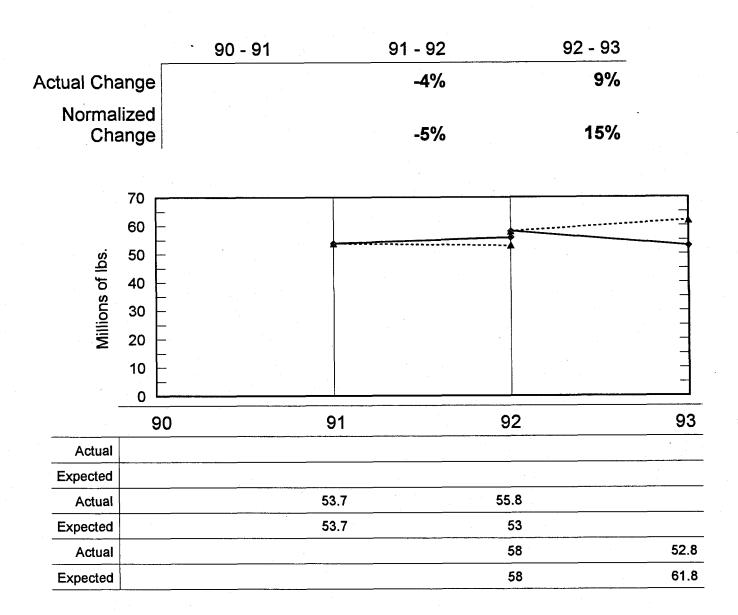


Figure 8-17


TOTAL USE - YEAR TO YEAR CHANGE

	90 - 91	91 - 92	92 - 93
Actual Change	7%	7%	4%
Normalized Change	5%	6%	10%

TRI RELEASES & TRANSFERS - YEAR TO YEAR CHANGE

	Actual Releases and Transfers Quantity		
<u>*</u>	Expected Releases and Transfers Quantit	y = Actual x Production	on Ratio

8.5 Progress of Selected Facility Universes

8.5.1 Top 20 and Non-Top 20 Use Facilities

Statewide progress in TUR can also be viewed in terms of the progress made by different groups of facilities. A large percentage of the reported chemical byproduct and use in Massachusetts is from a small number of facilities. Because the relative amount of byproduct and use reported every year by different facilities changes, there is no static list of the top ten or top twenty users of chemicals in Massachusetts. However, over the four years for which data is available, there are only 28 facilities that have been one of the top twenty users in any of the four years. These facilities are referred to in this report as the "Top 20 Use Facilities." The "20" refers to the fact that they were in the list of top 20 total use facilities for at least one year, not the number of facilities in the list. "Non-Top 20 Use Facilities" refers to all those facilities that did not report enough total use to be on the top 20 use facility list for any year.

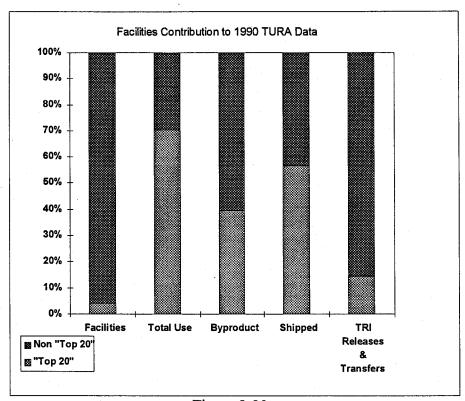


Figure 8-20

Figure 8-20 shows how these facilities and their reported quantities compare to the reported quantities for all other facilities. Although the top 20 use facilities comprise less than 4% of the facilities reporting in any given year, they account for almost 70% of the total use reported in all years, 40% of the byproduct generated and 50% of the toxic chemicals shipped in product.

127

According to the TRI production ratios, there were significant differences in production level trends for these two groups of facilities. Table 8-4 shows the weighted average production ratio for each group and for Universe 0 overall. The top 20 use facilities reported a slight decline in production for 1991 and 1992 followed by a 6% production increase in 1993. The non-top 20 use facilities showed a steady increase in production ranging from 4% to almost 8% each year.

Weighted Average Production Ratios	91	92	93
Universe 0 - All 1990 Reportables	0.972	0.991	1.061
Universe 0 - Top 20 Use Facilities	0.948	0.955	1.062
Universe 0 - Non Top 20 Use Facilities	1.040	1.077	1.061

Table 8-4 Top 20 and Non-Top 20 Weighted Average Production Ratios

There is also a different pattern in the reported byproduct for these two groups. As previously seen in Figure 8-20, the non-top 20 use facilities accounted for a larger portion of the reported byproduct. Figure 8-21 shows that they also experienced a larger actual reduction, 15% or 10 million pounds from 1990 to 1993.⁷ The top 20 use facilities experienced an actual byproduct reduction of only 9% or 3 million pounds during that same time. Because of the differences in the reported production ratios for each group, the normalized byproduct differences are greater. The non-top 20 use facilities avoided 22 million pounds or 28% of expected 1993 byproduct while the top 20 use facilities avoided only 2 million pounds or 5% of expected 1993 byproduct.

In contrast, the top 20 use facilities accounted for almost all of the actual reduction in total use reported. Their actual reduction in total use of 148 million pounds, 23%, from 1990 to 1993, accounted for most of the overall reduction in total use of 152 million pounds seen in Universe 0 as shown in Figure 8-22. The 4 million pounds of actual reduction achieved by the rest of the facilities was only a 2% reduction from their 1990 actual reported total use. The normalized results are closer because the top 20 use facilities reported lower production ratios than the rest of the facilities over most of the reporting period. On a normalized basis, the top 20 use facilities avoided 124 million pounds or 20% of total expected chemical use and the non-top 20 use facilities avoided 54 million pounds or 17% of total expected chemical use.

The next three graphs use a format similar to that seen in Figures 8-9 to 8-15. The quantities actually reported are represented by a solid line, the quantities normalized for production (the 'expected' quantities) are represented by dashed lines. The quantities reported by all three groups (top 20 and non-top 20 use facilities as well as the total 1990 Reportables--Universe 0), are given on each graph to allow comparison between the groups. If the dashed line is higher than the solid line, there was a normalized *reduction* in the quantity shown. If the solid line is above the dashed line, actual quantities were greater than the expected quantities so there was a normalized *increase*.

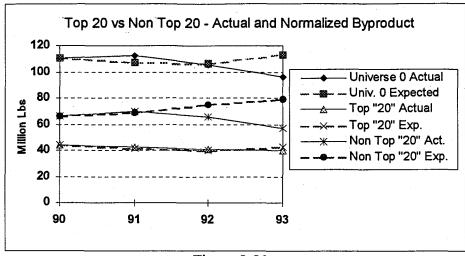


Figure 8-21

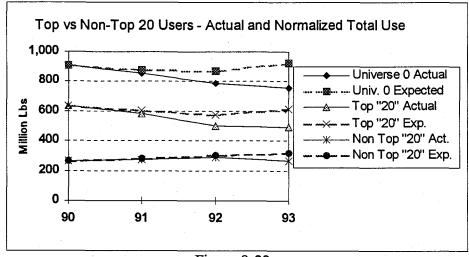
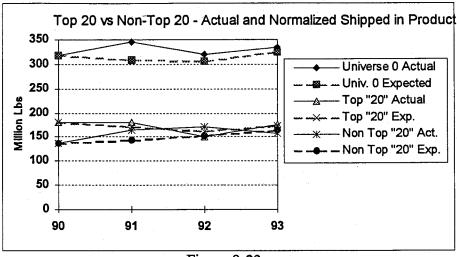



Figure 8-22

The amount of chemicals reported shipped in product follows yet a different pattern (Figure 8-23). The actual amount shipped for all 1990 Reportables increased by 16 million pounds from 1990 to 1993, an increase of 5%. Most of this was due to increases in the amount shipped by the non-top 20 use facilities. For all facilities, the actual quantity shipped was very close to the expected amount shipped. This indicates that changes in quantities of toxic chemicals shipped in or as product are primarily due to changes in production levels, rather than TUR.

Figure 8-23

8.5.2 Facilities and Chemicals Going Below and Above Threshold

As discussed in Chapter 7, one issue with measuring progress is that facilities can stop reporting for a number of reasons including: reducing the use of toxics below the reporting threshold, substituting a non-reportable chemical for a listed toxic chemical, or reducing production for economic or market reasons. Some of these reasons represent TUR activities, while others do not. Because they are no longer reported, it is not possible to determine what the actual reductions are.

Universes 3 and 4 are two subsets of Universe 0 which can be used to analyze the effect of dropping below or rising above the reporting threshold on the overall measurement of TUR progress.

Universe 4, Consistent Facility, includes records for any chemicals reported by a facility that reported at least one chemical in all four years. If a facility reported in all four years, then all their 1990 reportable chemicals are included, including those that dropped below or came above the reporting threshold during that time. Universe 3, Consistent Chemical, is a subset of Universe 4 and includes only records for chemicals that were reported by a facility for all four years.

The next two graphs show how these two universes compare to Universe 0. In each graph, the bar for each year represents the total number or quantity reported for Universe 0. The two lines represent the number or quantity for Universes 3 and 4. Because Universe 3 is a subset of Universe 4, Universe 3 is always the lower line in the graph.

Figure 8-24 shows how the byproduct generated compares between these three universes; similarly, Figure 8-25 shows how total use quantities compare. In all four years, the consistent facilities (Universe 4) were responsible for more than 91% of the total Universe 0 byproduct and 93% of the total Universe 0 use reported. The difference between Universe 4 and Universe 0 byproduct quantities consists of facilities coming into and going out of reporting. Consistent chemicals (Universe 3) included between 80% and 86% of the Universe 0 byproduct and 86% of the Universe 0 total use reported. The difference between Universe 3 and Universe 4 byproduct quantities consists of chemicals, used by consistent facilities, which fell below or rose above the reporting threshold. Similarly, the difference between Universe 3 and Universe 0 consists of all chemicals which fell below or rose above the reporting threshold during the four year period.

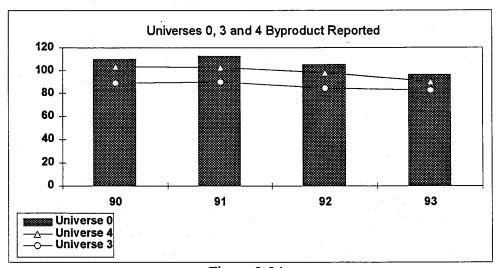


Figure 8-24

⁸Note that the number of facilities reporting in Universe 0 dropped from 663 in 1990 to 572 in 1994 (see Appendix J1), while the number of facilities reporting in Universes 3 and 4 remained constant at 421 and 446, respectively. This indicates a trend of more facilities dropping below thresholds than coming above.

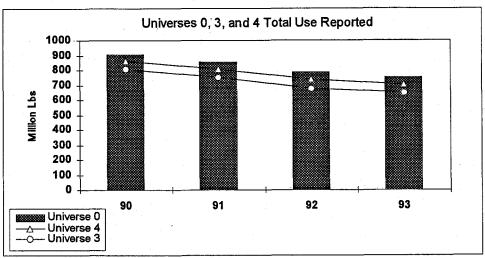


Figure 8-25

Figure 8-26 compares the actual percent reductions and normalized percent reductions of Universes 0, 3, and 4. For byproduct, Universe 3 experienced a reduction in actual quantity of byproduct generated of 8% over four years, while both Universes 4 and 0 experienced a 13% reduction. It is possible, therefore, that the problem of chemicals falling below or rising above the threshold, causing a 'quantum' jump of \pm 10,000 lb or 25,000 lb (the threshold amounts), could cause an overstatement of progress by as much as 5%. The actual reduction depends on the actual quantities of byproduct generated in years prior to and after reporting years, but is at least 8% and possibly as high as 13%. Results also indicate that overall byproduct reduction trends are similar (13%) for facilities which report consistently and all facilities reporting during the four year period.

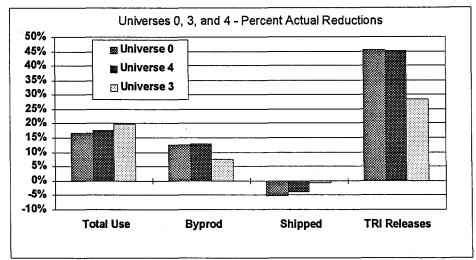


Figure 8-26

The pattern for TRI releases to the environment are similar but more marked. Universe 3 experienced a reduction in actual quantity of TRI releases of 28% over four years, while both Universes 4 and 0 experienced a 45% reduction. Therefore, the overstatement of progress in releases to the environment could be as high as 17%. These results indicate clearly that chemicals leaving the reporting universe are responsible for a large portion of the progress in releases to the environment for Universe 0.9

The trends for total use are different. Universe 3 (consistent chemicals) experienced a reduction in total use quantity of 20% over four years, Universe 4 (consistent facilities) experienced an 18% reduction, and Universe 0 experienced a 17% reduction. Therefore, chemicals falling below or rising above the threshold may cause an *understatement* of progress in total use reduction by as much as 3%.

This analysis suggests that the effect of facilities leaving and entering the reporting universe do not have a significant effect on the measurement of progress, while the effect of chemicals dropping below and rising above the reporting threshold may be significant. For byproduct and total use, overstatement or understatement of progress was shown to be less than 5% over 4 years. For releases to the environment, the effect could be as high as 17% of 1990 releases. The lack of chemical quantity data for years in which the chemicals were not reported result in uncertainty in the measurement of progress. In each instance, this uncertainty is approximately one third of the actual quantity change.¹⁰

8.6 Further Analysis of TUR Progress

In addition to measuring state-wide progress, an attempt was made to analyze progress for smaller subsets of the reporting universe such as individual chemicals, groups of facilities and chemicals, and different industry segments. Because of the data issues¹¹ described in Chapter 4 and the sensitivity of the small subsets to data anomalies, these analyses did not lead to definitive results. However, the preliminary results suggest that the methodology will be useful in measuring progress in different areas once the data issues are resolved. This section describes some of the subsets that were reviewed and the problems that were encountered.

⁹ The quantities referred to here are only for releases to the environment. Transfers off-site are not included because of changes in reporting requirements discussed in Section 8.2

¹⁰ For byproduct, 5% is approximately one third of 13%. For releases to the environment, 17% is approximately one third of the actual quantity change of 45%.

¹¹Many of the subsets involve small numbers of facilities or chemicals. In these cases, missing or invalid information has a more significant effect on the methodology.

8.6.1 Analysis by Chemical Group

These categories were selected because they were of particular concern or because the chemicals in the category could be expected to exhibit similar TUR trends. The chemicals included in each category are listed in Appendix B. Several data issues discussed previously in Chapter 4 were encountered when the methodology was applied to these categories. Briefly, the chemical categories studied and the problems with applying the methodology to those categories included:

- Acids the four chemicals in the list-were subject to the problem of inconsistent reporting of wastewater treatment chemicals. Also, in many cases these chemicals may have been consumed in the production process. The TURA data format does not allow these factors to be taken into account in the methodology.
- Carcinogens one chemical, styrene monomer, accounted for the vast majority of the reported quantities in this category. Because of this, the results were reflective of styrene, not carcinogens in general.
- EPA 33/50 chemicals this category included some metals and so was subject to the problems described below for metals. Also, a number of reporting anomalies were identified that needed further investigation before the results could be presented with confidence.
- Metals the metals used in the largest quantities, particularly copper, were subject to the problem of inconsistent reporting of metal bender exemption chemicals. Also, facilities are instructed to use the total weight of a metal compound when reporting use and the weight of just the metal portion of the compound when reporting byproduct. There also appeared to be problems with facilities reporting these numbers incorrectly in the initial reporting years.
- Montreal Protocol chemicals¹² a number of these chemicals were not reportable until 1991 and therefore were not included in the analysis. The 1990 Reportable chemicals in this group exhibited over 60 % reduction for byproduct and total use in both actual and normalized terms. TRI releases to the environment for this group were reduced by over 80 %. This trend is the result of federal environmental regulations which phase-out production of these ozone-depleting chemicals for emissive uses as of January 1996.
- Swedish Chemical list this category included metals and so was subject to the problems
 described previously. Also, a number of reporting anomalies were identified that needed
 further investigation before the results could be presented with confidence.

¹²Montreal Protocol chemicals are those Class I ozone-depleting substances being phased-out under international treaty (Montreal Protocol) and federal regulations (Clean Air Act Amendments of 1990).

The primary benefit of testing the methodology with these groups was that a number of reporting and data issues were identified. When these issues are resolved, analysis by chemical group should provide an insight into which types of chemicals are responsible for overall observed changes. A sample analysis by chemical group for Montreal Protocol chemicals is included in Appendix J3.

8.6.2 Analysis by How Chemicals are Used

Chemical use is reported under TURA in three different-categories: manufactured, processed, and otherwise used. As seen in Figure 8-27, 79% of the total chemical use reported is chemicals processed in the production of product. Only 10% of the total 1990 reported total use in Massachusetts was due to chemicals manufactured and 11% was due to chemicals otherwise used.

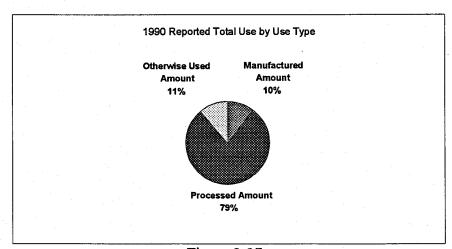


Figure 8-27

In general, these different uses produce different end points for the chemicals. Chemicals that are manufactured or processed tend to have a larger percentage of the chemical shipped as product and a smaller percent generated as byproduct. Chemicals that are otherwise used end up largely as byproduct, rather than shipped in product. The TUR techniques applicable to each type of use are different, as well as the ease of implementing them. For example, input substitution for copper is not likely to be appropriate if you are a supplier of copper plating baths. In addition, if the toxic chemical is a critical component in your product formulation, input substitution will require more research and testing than if the chemical is otherwise used and not critical to your final product. For these reasons, differences in TUR trends may appear depending on how the chemical is used.

Therefore, an analysis was performed based on a preliminary categorization of selected chemicals into groups based on how they were typically being used. Chemicals were separated based on

whether they were generally manufactured, processed or otherwise used. As for the previous chemical groups, many issues were discovered during these analyses.

One issue related to trade secret claims within different use types. As seen in Figure 8-28, 80% of the chemicals manufactured in Massachusetts were claimed trade secret in 1990. The remaining subset of manufactured chemicals was too small for progress to be meaningfully measured.

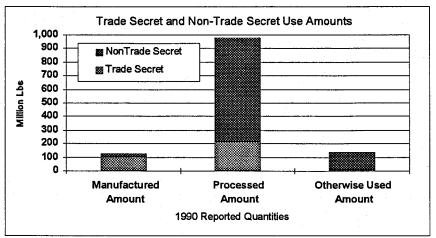


Figure 8-28

Conversely, only 22% of the processed chemicals and 3% of the otherwise used chemicals were claimed trade secret. These two use types provided a large enough sample size for analysis. Initially, an attempt was made to group chemicals into those processed and those otherwise used. One problem with this classification scheme was that, for the group of chemicals that were mainly processed, styrene monomer accounted for 53% of the reported byproduct and 89% of the reported use. The results of the methodology were heavily influence by the styrene data. In order to account for this effect, a second group of 'processed' chemicals was created that excluded styrene.

Another problem with this classification scheme was that, although there were a number of chemicals that were mainly processed, there were no chemicals that, as a whole, were mainly otherwise used. It was found that for a chemical that had large amounts reported as otherwise used, there were some facilities that mainly otherwise used the chemical and some facilities that mainly processed it. The solution was to group the chemicals into three groups: chemicals including styrene that were processed in large quantities, chemicals excluding styrene that were

processed in large quantities, and chemicals that were both processed and otherwise used.¹³ The list of chemicals included in each category is included in Appendix B.

Figure 8-29 shows the relative amounts reported manufactured, processed and otherwise used for those three groups of chemicals. As can be seen from the figure, the 'processed' chemical group had a very small amount reported as manufactured or otherwise used. However, for the 'processed and otherwise used' chemical group, the quantities processed and otherwise used were almost equal.

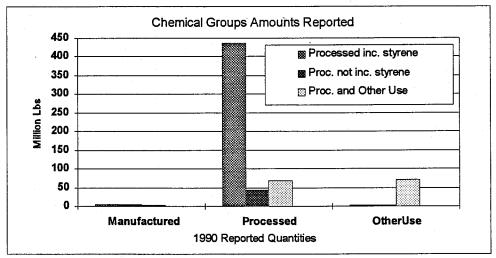


Figure 8-29

These groups of chemicals also had different changes in levels of production as measured by the weighted average production ratio (PR_{wa}). In particular, because styrene comprised such a large percent of the quantities reported for processed chemicals, it was the determining factor for normalizing production levels for the entire group. In general, 'processed chemicals with styrene' showed a net decrease in production over the four year period, while the 'processed chemicals without styrene' showed an increase. 'Processed and otherwise used' production ratios also suggested an increase over the four year period. (see Appendix J-3)

This methodology for grouping chemicals by how they are used was tested; the results are included in Appendix J-3. This preliminary analysis suggests the following:

• styrene has an overpowering effect on any group that it is in, therefore, the group should be analyzed both with and without styrene,

¹³The criteria for grouping chemicals, although not done rigorously, was based on the total use reported, the proportion of the use reported as processed versus otherwise used, and the number of facilities that reported each chemical. In general, chemicals were selected for the 'processed' category if the amount processed was greater than 10 million pounds and accounted for more than 80% of the total use. Chemicals were selected for the 'otherwise used' category if the amount otherwise used was over 2 million pounds and accounted for at least 40% of the total use.

- chemicals that are mostly processed appear to have greater progress in reducing byproduct generated than chemicals that are processed and otherwise used, and
- chemicals that are processed and otherwise used appear to have decreased total use and releases to the environment more than chemicals that are processed.

Analysis by chemical group offers valuable insight into the reasons for TUR progress. Analyses such as the ones described in this section will be explored further when the next data release becomes available.

8.6.3 Analysis by Industry SIC groups

The analysis of industry SIC groups was done by grouping facility data according to reported SIC codes. The analysis was performed using both the facility-level SIC codes developed (Section 3.3.3.2) as well as the production unit-level SIC codes reported on Form S. These two analyses were compared to determine if trends were markedly different between the two and to check the degree of "double counting" in the production unit-level analysis. The SIC codes were grouped using the draft proposed TURA User Segment categories. (see Appendix C)

As with the analysis of chemical groups, the issues with the data having to do with small sample sizes and data anomalies do not allow results to be presented here with confidence. However, the preliminary results suggest that there are differences in TUR progress made by different industries. A sample industry SIC code analysis is included in Appendix J-4.

8.7 Summary

In summary, the methodology appears to work for large sets of data but is sensitive to data anomalies and errors with smaller sets (less than 50% of the data). Massachusetts facilities appear to be making progress in reducing the generation of toxic byproducts although the amount of progress varies between different segments of the reporting universe. Tables 8-5 and 8-6 summarize the progress for a few of the major universes reviewed in this study. Further study is needed once the existing data issues have been resolved, in order to obtain a more accurate measure of TUR progress for facilities in Massachusetts.

¹⁴ Double counting occurs because the same facility-wide quantity is attributed to each primary production unit-level SIC code. If one chemical is used in several production units with different SIC codes, it will be 'counted,' or included, in each analysis.

TURA DATA - 1990 REPORTABLES

	Quantity	1990 (lbs)	1991 (lbs)	1993 (lbs)	Change (lbs) [90 or 91 to 93]	Actual % Reduction	Normalized %
							Reduction
TURA	TURA Byproduct	110,369,343		96,552,630	13,816,713	13%	14%
	Manufactured	25,531,959		6,322,692	19,209,267	75%	
	Processed	753,479,769		637,016,428	116,463,341	15%	
	Otherwise Used	126,948,628		111,014,677	15,933,951	13%	
	Total Use	905,960,356		754,353,797	151,606,559	17%	19%
	Shipped in or as Product	318,173,895		334,632,394	(16,458,499)	-5%	-3%
TRI	Total Releases	20,723,828		11,320,847	9,402,981	45%	46%
	Transfers to POTWs	3,188,173		1,479,757	1,708,416	54%	25%
	Other Transfers Off-Site		29,685,722	33,774,797	(4,089,075)	-14%	%8-
	Total Releases & Transfers		48,403,928	46,575,401	1,828,527	4%	%8
	1						

Table 8-5 Actual and Normalized Progress for TURA 1990 Reportables

	F	Percent Reductions 1990 to 1993			
	Вур	Byproduct Total Use		al Use	
Universe	Actual	Normalized	Actual	Normalized	
1990 Reportables (Universe 0)	13%	14%	17%	19%	
Consistent Facilities (Universe 4)	13%	13%	18%	20%	
Consistent Chemicals (Universe 3)	8%	8%	20%	20%	
Top 20 Use Facilities	9%	5%	23%	20%	
Non Top 20 Use Facilities	15%	28%	2%	17%	
Montreal Protocol Chemicals	74%	73%	68%	67%	

Table 8-6 Actual and Normalized Progress for Selected Universes

9 CONCLUSIONS AND RECOMMENDATION

9.1 Conclusions

9.1.1 Methodology

A methodology was developed for measuring TUR progress in Massachusetts using the TURA and TRI data. The methodology takes the following approach:

- Consistent Universes To make data comparable across years, subsets of the full database, or 'universes', must be created which have consistent reporting requirements and which are free of other inconsistencies (e.g., trade secret data or production unit information) at the particular level being studied. This approach led to the formation of multiple universes, each with a different consistent data set which could be analyzed for trends.
- Multiple Metrics Measuring TUR progress is a very complex undertaking. Changes in chemical use and byproduct generation patterns, which are the result of many diverse activities and influences, must be identified and quantified. Using multiple metrics of progress results in a more robust methodology, where different metrics incorporate different types of activities and influences. If the different metrics independently suggest the same conclusions, then there will be a much higher level of confidence in the result. Additionally, multiple metrics will suggest reasons for observed overall trends.
- Actual and Production Normalized Measures Actual measures analyze changes in the
 reported quantities, regardless of the reason for change. Production Normalized measures
 attempt to factor out changes in quantities due to changes in production levels, leaving
 only changes resulting from TUR activities. This methodology used a weighted average
 TRI Production Ratio as a proxy for production level.

The methodology was applied to the 1990 - 1993 TURA data, both to test the methodology and to provide an indication of TUR progress in the Commonwealth. The methodology appeared to work well at the state-wide level for large universes. However, it was sensitive to data anomalies and errors for small subsets, such as those created for industry or chemical level analysis. Because some facilities have a disproportionately large percent of chemical use or byproduct, or because some subsets may only include a few facilities, data anomalies will always have the potential to distort progress for small subsets. However, this effect will be lessened by improving the data quality further.

Between one third and one half of the records available for study are single-production unitchemicals, the only type of records for which production unit-level BRI's can be aggregated to produce an overall state-wide BRI. This subset proved to be sensitive to data anomalies and errors, in part because of its size and in part because of the large number of data anomalies and errors at the production unit level. Changing production unit numbers and changing base years also limit the number of cases where the methodology can be applied.

9.1.2 Data Quality

Several sources of data quality problems were identified, including facility reporting errors, data entry errors, database system problems and data extract procedure problems. Both facility reporting and data entry errors were concentrated in 1990 reporting year. Facilities were contacted about questionable data; approximately one half of the responses from those facilities have been received. Data entry errors were corrected in FMF and will be included in the next data release. System and extract procedure problems were analyzed to determine the best solution, and a schedule has been created for working on them. Some, but not all, will be included in the next data release.

What is the effect of data quality on the measurement of progress? The facility reality check found that facility-level quantities had a reasonably low error rate, while six of the eleven facilities had some type of production unit information errors. This suggests that errors in toxic chemical quantities are unlikely to significantly effect the measurement of progress at the state-wide level. For smaller subsets of data, however, data anomalies and errors may distort progress. The errors in production unit-level information cause difficulties in analyzing the data. For example, between 4 and 6 percent of the data cannot be used for analyzing industry-level progress because of incomplete records. Therefore, the primary impact on measuring progress is at the chemical or industry level, rather than at the state-wide level, and on analyses which use production unit-level data.

9.1.3 Reality Check

The check of specific facilities to validate the methodology provided a great deal of useful information and insight into the problems and issues that face TURA filers.

Facility managers often indicated that they had low confidence in their production unit level information. This is due to four factors. The first is that facility managers find it difficult to identify good normalizing measures for the BRI calculations. The second is that problems with changing production unit numbers makes it difficult to maintain reliable production unit level data. The third factor relates to facilities using standard emission factors or other similar estimation techniques. TUR activities are not incorporated into emission factors, therefore, byproduct estimates based on these factors do not change as TUR is implemented. The last factor applies to facilities with small quantities of byproduct. When total quantity of byproduct is very small, unimportant, small changes in quantity of byproduct may translate into large percent changes, either positive or negative.

Generally speaking, the eleven 'reality check' facilities have made significant improvements in TURA data collection and analysis since 1989. These improvements range from better measurements of byproducts and emissions (as opposed to estimates) to better inventory control procedures to employee training. The most important trend is computerization of TURA data. Such computerization includes batch processing software to better track production operations, spreadsheets and databases to determine and compare chemical use with reporting thresholds, and incorporation of TURA data elements into facility-wide information management systems.

Despite these improvements, there are numerous opportunities to improve TURA data tracking. For example, eight of the eleven facilities at least partially, and in some cases totally, determine reportable chemicals manually. Only three firms use computers to analyze which chemicals were used over threshold limits. This is a time consuming task without the aid of computers. Facilities with complex batch operations generally lacked good production unit level information on chemical use, byproducts, shipped-in-product, and unit of product. The lack of such information means firms 'gestimated' allocation factors to arrive at materials balance data. The facilities also rarely looked back at the data reported in prior years since the data is not readily available in an easy to comprehend fashion. While this information is important for TUR planning purposes, it is equally important for well-functioning manufacturing operations. The increasing use of 'best practice' TUR reporting would not only provide improved TURA data, but would also provide value to most Massachusetts manufacturers.

The methodology was developed to measure aggregated, state- or industry-wide progress, not progress for a particular facility. It was found to be extremely sensitive to data errors and anomalies in small subsets of the data. For both of these reasons, the reality check project was not able to verify the accuracy of the methodology at the facility level, although it was useful in determining the areas that need to be addressed.

9.1.4 Measurement of Progress - 1990 to 1993

Are Massachusetts industries making progress in toxics use reduction? By nearly all metrics, the answer is yes and leads to the question of how much. Examining all of the metrics and universes together produces a picture of progress. This section summarizes the more relevant quantitative metrics calculated in this study. For each type of quantity (byproduct, use, etc.), the following analyses were performed:

- Actual and Normalized trends for each subset of reportable chemicals and industries (1990 Reportables, 1991 Reportables, and 1992 Reportables)
- Actual and Normalized trends for all reported chemicals and industries in two consecutive years (year to year analysis)
- Actual and Normalized trends for consistently reporting facilities, and for consistently reported chemicals by those facilities
- Actual and Normalized trends for 'top 20' and 'non-top 20' toxic chemical users

The following summarizes the results of those analyses on the various quantities:

Byproduct Generation For the largest consistent universe, Universe 0 or 1990 Reportables, results indicate a 13% actual reduction in quantity of byproduct generated, and a 14% normalized reduction from 1990 to 1993. The byproduct generation for 1991 Reportables decreased, while byproduct increased for 1992 Reportables (over a one year period 1992 - 1993). However, 1990 Reportables comprise the majority of byproduct generated. Therefore, the additional reportable chemicals and industries are unlikely to have a significant impact on the overall percent changes. The year to year trend analysis for all reportable chemicals and industries suggested that there was no change in byproduct generation from 1990 to 1991, followed by a steady decrease in byproduct generation over the next two years (7 and 4% actual reduction and 6 and 10% normalized reduction, respectively).

Total Use For 1990 Reportables, results indicate a 17% actual reduction in total toxic chemical use, and a 19% normalized reduction. The total use for 1991 Reportables increased, while total use decreased for 1992 Reportables. As with byproduct generation, the 1990 Reportables comprise the majority of total use, so the additional reportable chemicals and industries are unlikely to have a significant impact on the overall percent changes. The year to year analysis suggests a consistent trend of reductions in total toxic chemical use over the three years of 4-7% (actual) and 5-10% (normalized).

Shipped in or as Product For 1990 Reportables, results indicate a -5% actual increase in total toxic chemicals shipped in or as product and a -3% normalized increase. The results indicate that additional reportable chemicals and industries will have a negative impact by further increasing the change in shipped in product quantities. 1991 Reportables, at approximately one quarter the magnitude of 1990 Reportables, exhibited a -70% actual increase and a -62% normalized increase from 1991 to 1993. 1992 Reportables exhibited a smaller increase of -10% (actual) and -5% (normalized). While the quantity shipped in or as product could be expected to increase due to increases in production levels, the normalized analysis suggests that the increase was not entirely offset by increases in production.

TRI Releases and Transfers As an aggregate, TRI releases and transfers for 1990 Reportables experienced a reduction of 4% (actual) and 8% (normalized) over the period 1991 to 1993. 1990 data was not used as a baseline due to 1991 changes in reporting guidelines for off-site transfers. While 1990 Reportables still comprise the majority of releases and transfers, both 1991 and 1992 Reportables had significant reductions (18 - 27%). Therefore, the additional reportable chemicals and industries are likely to have a positive impact on progress in reducing toxic chemical releases and transfers over the period 1991 to 1993. It is important to note, however, that when 'releases and transfers' are broken down into their component parts, results indicate substantial reductions for releases to the environment and transfers to POTW's, while transfers off-site increase. Year to year trends for the aggregated TRI releases and transfers quantities indicate an increase from 1991

to 1992 of -4% (actual) and -5% (normalized) offset by a decrease from 1992 to 1993 of 9% (actual) and 15% (normalized).

Top 20 Use Facilities Results showed a marked difference in trends between the 'top 20 use' facilities and the 'non-top 20 use' facilities. The 'top 20 use' facilities represented less than 4% of facilities reporting, but accounted for 70% of the use, 40% of the byproduct, and 50% of the shipped in product total quantities. The 'top 20 use' facilities experienced an actual reduction in total toxic chemicals used of 23% (148 million lb) and a normalized reduction of 20%, from 1990 to 1993. Similarly, 'top 20 use' facilities experienced an actual reduction in byproduct generated of 9% (3 million lb) and a normalized reduction of 5%.

Conversely, the 'non-top 20 use' facilities experienced only a 2% reduction in actual total toxic chemical use (4 million lb), but reported production ratios which suggest increased production levels. Therefore, the 'non-top 20 use' normalized reduction in total use was calculated at 17% for 1990 to 1993. Similarly, the actual reduction in byproduct generated by the 'non-top 20 user' facilities was 15%, while the normalized reduction was 28%.

Consistently Reporting Facilities and Chemicals Facilities using and reporting the same chemicals consistently over 4 years experienced a reduction in toxic chemical byproduct generation of approximately 8%, compared with a 13% reduction for all facilities. This analysis examines the issue of whether facilities and chemicals which drop below or rise above the reporting threshold impact the measurement of progress. When chemicals drop below or rise above the threshold, this causes a quantum drop or increase of 10,000 or 25,000 pounds, when it is likely that the actual quantities are somewhere in between. Results indicated that more chemicals dropped below than came above the threshold, which caused progress to be overstated by as much as 5%, depending on what the actual quantities are in the years in which those chemicals are not reported.

Analysis by Chemical and Industry Groups Analyses by chemical and industry group are useful for determining the source of observed changes in toxic chemical quantities. For this project, these types of small-subset analyses were of great value in identifying data anomalies and errors. Some groups did exhibit clear trends, for example Montreal Protocol chemicals exhibited a greater than 60 % reduction for byproduct generation and total use in both actual and normalized terms. Similarly, releases to the environment for this group was reduced by over 80%. As data quality improves, this type of analysis will be valuable for determining the cause of observed overall changes.

Trade Secret Claims Because there are no trade secret data included in the TURA data extract files which are distributed by DEP, all the analyses shown here exclude all trade secret chemical quantities, as well as quantities for those non-trade secret chemicals which were claimed trade secret by the facility in another year. In 1990, 80% of the chemicals manufactured in

Massachusetts were claimed trade secret. This results in a remaining subset of manufactured chemicals that is too small for progress to be meaningfully measured. Conversely, only 22% of the processed chemicals and 3% of the otherwise used chemicals were claimed trade secret.

Analysis by How a Chemical is Used Chemical use is reported under TURA in three different categories: manufactured, processed, and otherwise used. In 1990, 79% of the total chemical use was reported as processed, 10% was reported as manufactured and 11% was reported as otherwise used.

An experimental approach was developed for examining progress in terms of how a chemical is used: "mostly processed," or "mostly processed and otherwise used." The preliminary analysis suggested that chemicals that are "mostly processed" appear to have greater progress in reducing byproduct generated than chemicals that are "processed and otherwise used," and chemicals that are "processed and otherwise used" appear to have decreased total use and releases to the environment more than chemicals that are "mostly processed." It was also observed that styrene monomer accounts for the majority of processed chemical use, and so has an overpowering effect on any group that it is in. Therefore, "processed" chemicals are analyzed both including and excluding styrene.

In summary, results indicate that there is TUR progress in Massachusetts, although the amount of progress varies depending on which facilities, chemicals, and quantities are examined. The only areas where progress is not observed, are for toxic chemicals shipped in or as product, and for toxic chemicals transferred off-site.

9.2 Recommendations

There are a number of changes that could be made by the TURA agencies that would improve the useability of the TURA data, improve the quality of the data and, in general, make the data and the system more accessible and meaningful for the agencies, the reporting facilities and the public.

9.2.1 Facility Practices

Although TURA data is important for measuring TUR progress in Massachusetts, it is equally important for well-functioning manufacturing operations. Increasing the use of 'Best Practice' TUR reporting would not only improve TURA data, but would also provide value to most Massachusetts manufacturers. There are numerous methods to disseminate 'Best Practice' techniques. These include:

• teaching 'Best Practice' techniques in future TUR Planners courses and in TUR Planner continuing education credit workshops.

- dissemination of 'Best Practice' techniques by OTA, DEP, and TURI through written materials, case studies, inspections, and site-visits.
- Facilities identified either through site-visits or Data Exception reports with the most reporting problems could be singled out for technical assistance and education.

9.2.2 TURA Data Reporting

Changes in Form S reporting could be made which would both reduce the reporting burden on Massachusetts companies and improve the accuracy of reported information. These changes and improvements include the following: (a detailed description of each of these recommendations is included in Appendix K)

- provide for electronic reporting of Form S and Form R,
- provide feedback to facilities on data reported in prior years,
- include a pre-printed label with facility ID, address, and other consistently reported information.
- increase TUR Planner education regarding Form S reporting, and
- eliminate any unnecessary sections (those with data elements which are not used by the state) of state-only Form R.

There are also changes which could be made to Form S reporting which would greatly simplify the useability of the data for measuring progress and other types of analysis. These changes include the following: (a detailed description of each of these recommendations is included in Appendix K)

- for newly reportable chemicals and industries, request estimate of 1987 quantities in order to maintain a 1987 baseline.
- include TRI ID number on Form S and in FMF database,
- include a facility-level SIC code on Form S,
- clarify reporting and data management for wastewater treatment and metal bender exemption chemicals,
- require designation of a wastewater treatment production unit when wastewater treatment is responsible for more than 50% of a chemical's use,
- clarify instructions for TUR codes and include a TUR code category "unknown reasons for change,"
- revise optional section for 'reasons that a chemical is not longer reported' so that it is required and so that it is clear whether TUR was responsible for reductions below thresholds,
- require facilities to provide some data (with no associated fee) for the year in which a facility or chemical drops below the threshold, and
- improve metal bender exemption reporting to clarify for which metals an exemption is being requested.

9.2.3 Data Management

Changes to the data entry procedures and DEP's FMF system that would improve the useability of the TURA data include:

- allow deletion of records entered in error,
- prevent entering of non-reportable chemical CAS numbers,
- prevent entering of duplicate key records,
- create consistent method for entering BRI = 0 versus BRI = N/A, and
- create a facility 'history' file in FMF and extract files that includes changes to facility ID, name, address, production unit numbers and production unit descriptions.

9.2.4 Further Analysis and Investigation

There are a number of issues raised during this study which warrant further investigation or require further data analysis. The first task will be to rerun the analysis using a further refined 1990 data set and the 1994 TURA and TRI data, when they are released. This will provide a better 1990 baseline, particularly for byproduct, against which to measure progress, and will provide five years of data, further reducing the effect of data anomalies and short-term trends.

The second addition to the data will be the establishment of a 1987 baseline, from which to estimate progress over the 1987 to 1990 (or first year reported) period. This information, together with the 1990 to 1994 data analysis, will provide an estimate of progress toward the 50% byproduct reduction goal during the first 7 years (1987 to 1994) of the 10 year period.

9.2.4.1 Normalization Metrics

There are several issues regarding the normalization methodology which require further investigation. The first is a more thorough testing of the TRI Production Ratio/Activity Index as a proxy for level of production. It is unclear how confident facilities are of this value, how well the aggregated ratio reflects conditions in general, and what the sensitivity to production ratio error is in the normalization methodology.

The production ratio was used for this study because the preferred measure, a facility's unit of product quantity, is not collected on the Form S. There are a number of ways to address this data gap. Firms already use their unit of product to calculate a normalized measure of byproduct and emission reduction progress at the production unit level (BRI and ERI). One option is to add a facility-wide BRI, by having companies calculate a weighted average based on each production

unit's use relative to the total. In addition to a BRI, a measure of use reduction (Use Reduction Index - URI, or Input Reduction Index - IRI) and an ERI (XRI¹) could be reported. This would preserve the separation between a facility's production unit information and their chemical quantities. These overall measures of progress for each facility could then be aggregated based on the facility's use relative to the total, to produce a state-wide measure. Other alternatives for filling the data gap are to have facilities provide the unit of product quantities, or to report chemical quantities at the production unit level.

There are additional benefits to collecting a facility-wide aggregated metric. One of the drawbacks of having reporting thresholds is that chemicals and facilities fall below the threshold and all final data is lost for those chemicals. A facility-wide metric could incorporate all chemicals that had ever been reported, not just those for which the facility was currently required to report. For example, BRI's or URI's equal to 100, which would occur when the chemical was no longer used but the product was still being produced, could be incorporated into the total. Currently, that "last year" is lost when calculating quantitative measures of progress.

There are still many issues which need to be addressed regarding a facility-wide XRI. A critical issue is the existing quality of the BRI data being reported. Both the Reality Check and the data consistency check found many of the BRI data to be of poor or uncertain quality. This would need to be addressed by improving education, TURA Form S guidance documents, and implementation of facility 'Best Practices.' Other important issues to be addressed include: establishing a common base year and reporting a total quantity which could be used for weighting in a state-wide weighted average XRI.

Reporting of a comprehensive facility-wide XRI could potentially provide an accurate normalized metric for state-wide progress by LQTU facilities in the Commonwealth. It is a good metric for assessing progress in reducing use and byproduct generation for the chemicals which are already being used by LQTU facilities. There are, however, TUR activities which are not included in this type of metric. They are those for which reporting was never required; principally, this includes small quantity users and those who incorporate TUR into the initial design of a product or process. A state-wide indicator of production, if one were available, would capture this expanded cleaner manufacturing base, where production ratios for individual reporting facilities and processes will not.

9.3 Summary

This study has demonstrated the potential for using TURA and TRI data to measure toxics use reduction progress in Massachusetts. The use, byproduct and shipped in product quantity data and production unit data which are reported under TURA provide valuable information about trends in chemical use patterns. For the period 1990 to 1993, the methodology clearly indicates a

¹The general term 'XRI' will be used to describe these potential facility-wide measures.

reduction in toxic chemicals used and byproducts generated. While there are currently some limitations to useability of the data, it is still a relatively new reporting requirement, and is undergoing continuous improvement. Even with these limitations, the data is a valuable resource for measuring progress in toxics use reduction.

BIBLIOGRAPHY

Baker, Rachel, et al. *Alternatives for Measuring Hazardous Waste Reduction*, prepared for the Hazardous Waste Research and Information Center, HWRIC Project Number 89-067, April 1991.

Commonwealth of Massachusetts. An Act to Promote Reduced Use of Toxic and Hazardous Substances in the Commonwealth, Massachusetts Laws of 1989, Chapter 265

Commonwealth of Massachusetts. Massachusetts Toxics Use Reduction Act, Massachusetts General Laws, Chapter 21 I, 1989.

Geiser, Ken, and Rossi, Mark. Toxic Chemical Management in Massachusetts: The Second Report on Further Chemical Restriction Policies. Prepared for The Massachusetts Toxics Use Reduction Institute (TURI), January 1995

Harriman, E.D., Markarian, J., Naparstek, J., and Stolecki, J., Measuring Progress in Toxics Use Reduction, prepared by Tufts University Hazardous Materials Management Program, Department of Civil Engineering for the Commonwealth of Massachusetts Department of Environmental Protection. August, 1991.

Hart, Maureen. Study of Reasons for Reported Changes in Emissions in Region I from 1987 to 1990, prepared for the U.S. Environmental Protection Agency (EPA), Region I. November 16, 1992.

Indiana Department of Environmental Mangement, Office of Pollution Prevention and Technical Assistance. *IDEM 1994 Annual Report on Pollution Prevention in Indiana*. August 1994.

Massachusetts Department of Environmental Protection, Bureau of Waste Prevention. 1993 Reporting Package. April 29, 1994.

Massachusetts Department of Environmental Protection, Bureau of Waste Prevention. 1994 Reporting Package. May 5, 1995.

Pacific Northwest Pollution Prevention Research Center (PPRC). Measuring Pollution Prevention Progress: A Report on the Mid-Project Meeting for Measurement Pilot Projects in Alaska, Ohio, Oregon, and Washington. Funded by the United States Environmental Protection Agency, May, 1994.

Shapiro, Karen and Harriman, Elizabeth. "Measuring Toxics Use Reduction", *Pollution Prevention Review*, Summer 1995, pp. 47-55.

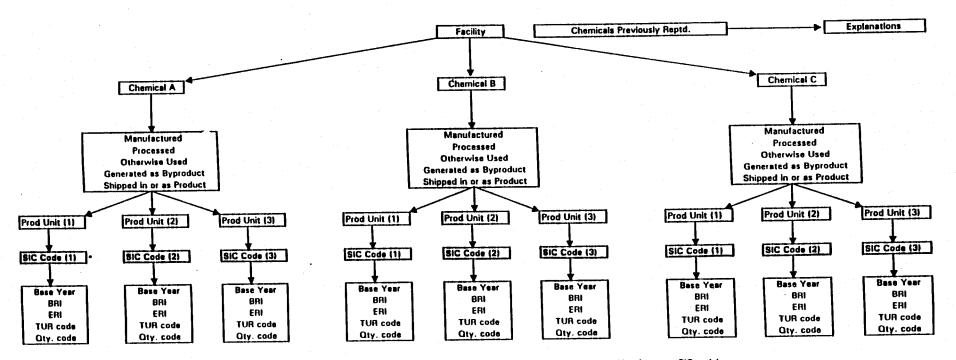
Tellus Institute, Shapiro, Karen and Dierks, Angela. Taking Stock: Measuring Toxics Use

- Reduction Progress in Massachusetts, submitted to The Massachusetts Toxics Use Reduction Institute. March, 1995.
- Tellus Institute, Sound Resource Management Corporation, CCA, Inc, Matrix Management Group. *Pollution Prevention Measurement Project: Normalization Measures*. Prepared for the Washington Department of Ecology, June 10, 1991.
- U.S. Department of Commerce, Bureau of The Census. County Business Patterns 1989, Massachusetts. CBP-89-23. June 1991.
- U.S. Department of Commerce, Bureau of The Census. 1987 Census of Manufactures, MC87-A-22 Geographic Area Series, Massachusetts. November 1990.
- U.S. Environmental Protection Agency (EPA), Office of Pollution Prevention and Toxics. *Proceedings Toxics Release Inventory (TRI) Data Use Conference: Building TRI and Pollution Prevention Partnerships*, Boston, Massachusetts, December 5-8, 1994. EPA/749-R-95-001, March 1995.
- U.S. Environmental Protection Agency (EPA), Office of Pollution Prevention and Toxics (7408). 1993 Toxics Release Inventory, Public Data Release, EPA 745-R-95-010, March, 1995.
- U.S. Environmental Protection Agency (EPA), Office of Pollution Prevention and Toxics, Washington, D.C. 1987-1993 Toxics Release Inventory on CD-ROM. EPA 749/C-95-004, June 1995.
- U.S. Environmental Protection Agency (EPA), Office of Pollution Prevention and Toxics, Washington, D.C. *Toxic Chemical Release Inventory Reporting Form R and Instructions*, Revised 1994 Version, March 1995.
- U.S. Environmental Protection Agency (EPA), Office of Research and Development. *Measuring Pollution Prevention Progress Proceedings*. EPA/600/R-93/151. Washington, D.C., April 1993.
- U.S. General Accounting Office (GAO). Toxic Substances: EPA Needs More Reliable Source Reduction Data and Progress Measures, GAO/RCED-94-93, September, 1994.
- U.S. General Accounting Office (GAO). Waste Minimization: EPA Data are Severely Flawed, GAO/PEMD-91-21, August 1991.

APPENDIX

- A. TURA Form S
 - A1 TURA Form S Data Diagram
 - A2 Form S
 - A3 Reporting Package Instructions
- B. TURA Chemicals
 - B1 All Chemicals Reported by Year Reporting First Required
 - **B2** Methodology Chemical Groups
 - **B3 Full TURA Chemical List**
- C. SIC Code User Segment Groups
- D. TRI Form R
 - D1 TRI Form R Data Diagram
 - D2 Form R
 - D3 Production Ratio/Activity Index
- E. Previous Measuring Progress Studies
 - E1 Tufts University Capstone Report
 - E2 Tellus Institute Study
- F. Examples of TURA Data Structure Issues
- G. 1987 Baseline
 - G1 1987 Baseline Information Survey
 - G2 Pilot Results
- H. TURA Data Issues
- I. TURA Data Analysis Universes
- J. TURA Data Analysis Results
 - J1 ParadoxTM Summary Reports
 - J2 Universe Percentages
 - J3 Chemical Category Analysis
 - J4 Industry Segment Analysis
- K. Recommendations for Modifications to Form S Reporting

Diagram


Data

ഗ

Form

TURA

Figure Al-1. TURA Form S Data

^{*} An SIC code is reported for each production unit (i.e. if two chemicals are reported for a single production unit, they will both be classified by the same SIC code).

Source: Tellus Institute, "Taking Stock: Measuring Toxics Use Reduction Progress in Massachusetts", March 1995

Page	1	of	
	•	••	

Massachusetts Department of Environmental Protection TURA REPORT - COVER SHEET

Toxic Use Reduction Act - Form S Cover Sheet

AT	TACH MAILING LABBL with facility name	ATTACH CORRECTED MAILING LABEL or enter	•
	ress & DEP Pacility Identification Number	facility, name & address	
Are	you making a trade secret claim for any of the informati	ion submitted in this COVER SHEET and/or Form \$(s)?YES	No
Ľ Y	ES, attach a statement substantiating the claim. Is this co	ppy:SanitizedUnsanitized	
This	report is being filed for reporting year: 19		
Secn	ion 2: Certification Statement		
	CERTIFICATION STATEMENT abould be signed after	all the from have been completed	
-			
Iber	reby certify that I have reviewed this and all attached docu	aments and that, to the best of my knowledge and belief, the submitted in documents are accurate basis, son measurements and/or reasonable estimates.	information
dete	available to the preparers of these documents. I am awa	tre that there are eignificant penalties for willful or intentional submiss	ion of false
	ecomplete information.		
Auth	porized Signature	Print Name	
Pari	rion/Title	Data	
Posis	tion/Title	Date	
	tion 3: Chemicals Previously Reported		
Sec	tion 3: Chemicals Previously Reported		porting this
Sec	tion 3: Chemicals Previously Reported	d That Are Not Reportable This Year information on any chemical reported last year that is not subject to rep	porting this
Sec OPT year.	TONAL QUESTION. In this section, you may provide it. If you substituted a non-listed chemical for a TURA checodes to explain why the chemical is not reportable are:	d That Are Not Reportable This Year information on any chemical reported last year that is not subject to reported, you may identify the substitution, as well. [1] Chemical Below Threshold But > 0 [2] No Chemical Usage in	Reporting
Sec. OPT year. The	TONAL QUESTION. In this section, you may provide in If you substituted a non-listed chemical for a TURA checodes to explain why the chemical is not reportable are: [3] Chemical Substitution [4] Chemical Eliminated (No	d That Are Not Reportable This Year information on any chemical reported last year that is not subject to reported, you may identify the substitution, as well.	Reporting
Sec. OPT year. The	TONAL QUESTION. In this section, you may provide it. If you substituted a non-listed chemical for a TURA checodes to explain why the chemical is not reportable are:	d That Are Not Reportable This Year information on any chemical reported last year that is not subject to reported, you may identify the substitution, as well. [1] Chemical Below Threshold But > 0 [2] No Chemical Usage in	Reporting
Sec. OPT year. The Year come	TONAL QUESTION. In this section, you may provide in If you substituted a non-listed chemical for a TURA checodes to explain why the chemical is not reportable are: [3] Chemical Substitution [4] Chemical Eliminated (No	d That Are Not Reportable This Year information on any chemical reported last year that is not subject to reported, you may identify the substitution, as well. [1] Chemical Below Threshold But > 0 [2] No Chemical Usage in	Reporting
Sec. OPT year. The Year come	TONAL QUESTION. In this section, you may provide it. If you substituted a non-listed chemical for a TURA checodes to explain why the chemical is not reportable are: [3] Chemical Substitution [4] Chemical Eliminated (Noments section). Enter all the codes that apply. # of Chemical Not Reportable (if applicable)	Information on any chemical reported last year that is not subject to replaced, you may identify the substitution, as well. [1] Chemical Below Threshold But > 0 [2] No Chemical Usage in Substitution) [5] Decline in Business [6] Other (Explain below in the Chemical Name	Reporting
Sec. OPT year. The Year come	TONAL QUESTION. In this section, you may provide it. If you substituted a non-listed chemical for a TURA checodes to explain why the chemical is not reportable are: [3] Chemical Substitution [4] Chemical Eliminated (Noments section). Enter all the codes that apply.	Information on any chemical reported last year that is not subject to replaced, you may identify the substitution, as well. [1] Chemical Below Threshold But > 0 [2] No Chemical Usage in Substitution) [5] Decline in Business [6] Other (Explain below in the Chemical Name	Reporting
Sec. OPT year. The Year come	TONAL QUESTION. In this section, you may provide it. If you substituted a non-listed chemical for a TURA checodes to explain why the chemical is not reportable are: [3] Chemical Substitution [4] Chemical Eliminated (Noments section). Enter all the codes that apply. # of Chemical Not Reportable (if applicable) anation of Why the Chemical Is Not Reportable. (Enter Codes)	Information on any chemical reported last year that is not subject to reported, you may identify the substitution, as well. [1] Chemical Below Threshold But > 0 [2] No Chemical Usage in Substitution) [5] Decline in Business [6] Other (Explain below in the Chemical Name	Reporting
Sec. OPT year. The Year come	TONAL QUESTION. In this section, you may provide it. If you substituted a non-listed chemical for a TURA checodes to explain why the chemical is not reportable are: [3] Chemical Substitution [4] Chemical Eliminated (Noments section). Enter all the codes that apply. # of Chemical Not Reportable (if applicable) anation of Why the Chemical Is Not Reportable. (Enter Codes)	Information on any chemical reported last year that is not subject to replaced, you may identify the substitution, as well. [1] Chemical Below Threshold But > 0 [2] No Chemical Usage in Substitution) [5] Decline in Business [6] Other (Explain below in the Chemical Name	Reporting
Sec. OPT year. The Year comme	TONAL QUESTION. In this section, you may provide it. If you substituted a non-listed chemical for a TURA checodes to explain why the chemical is not reportable are: [3] Chemical Substitution [4] Chemical Eliminated (Noments section). Enter all the codes that apply. # of Chemical Not Reportable (if applicable) anation of Why the Chemical Is Not Reportable. (Enter Codes)	Information on any chemical reported last year that is not subject to reported, you may identify the substitution, as well. [1] Chemical Below Threshold But > 0 [2] No Chemical Usage in Substitution) [5] Decline in Business [6] Other (Explain below in the Chemical Name	Reporting
Sec. OPT year. The Year come CAS Expl.	TONAL QUESTION. In this section, you may provide it. If you substituted a non-listed chemical for a TURA checodes to explain why the chemical is not reportable are: [3] Chemical Substitution [4] Chemical Eliminated (Noments section). Enter all the codes that apply. # of Chemical Not Reportable (if applicable) anation of Why the Chemical Is Not Reportable. (Enter Codes of Chemical Substituted for TURA Chemical Codes of Chemical Substituted for TURA Chemical Codes of Chemical Substituted for TURA Chemical Codes of Chemical Not Reportable (if applicable)	Information on any chemical reported last year that is not subject to reported, you may identify the substitution, as well. [1] Chemical Below Threshold But > 0 [2] No Chemical Usage in Substitution) [5] Decline in Business [6] Other (Explain below in the Chemical Name Chemical Name Chemical Name	Reporting
Sec. OPT year. The Year come	TONAL QUESTION. In this section, you may provide it. If you substituted a non-listed chemical for a TURA checodes to explain why the chemical is not reportable are: [3] Chemical Substitution [4] Chemical Eliminated (Noments section). Enter all the codes that apply. # of Chemical Not Reportable (if applicable) anation of Why the Chemical Is Not Reportable. (Enter Codes)	Information on any chemical reported last year that is not subject to reported, you may identify the substitution, as well. [1] Chemical Below Threshold But > 0 [2] No Chemical Usage in Substitution) [5] Decline in Business [6] Other (Explain below in the Chemical Name Chemical Name Chemical Name	Reporting
Sec. OPT year. The Year comme	TONAL QUESTION. In this section, you may provide it. If you substituted a non-listed chemical for a TURA checodes to explain why the chemical is not reportable are: [3] Chemical Substitution [4] Chemical Eliminated (Noments section). Enter all the codes that apply. # of Chemical Not Reportable (if applicable) anation of Why the Chemical Is Not Reportable. (Enter Codes that apply anation of Why the Chemical Is Not Reportable.) # of Chemical Substituted for TURA Chemical # of Chemical Not Reportable (if applicable) anation of Why the Chemical Is Not Reportable. (Enter Codes anation of Why the Chemical Is Not Reportable.)	Information on any chemical reported last year that is not subject to reported, you may identify the substitution, as well. [1] Chemical Below Threshold But > 0 [2] No Chemical Usage in Substitution) [5] Decline in Business [6] Other (Explain below in the Chemical Name Chemical Name Chemical Name	Reporting

	DEF FACILITY IDF:
	Page 2 of
ORM S COVI	ER SHEET (continued)
Section 4: F	acility-Wide Listing of Production Units
A PRODU product or on chemica	ICTION UNIT is best thought of as the combination of the process (or activities) used to produce a product or service and the service. In this block, please identify the PRODUCTION UNITS at the facility, then use the production unit number to report I usage in the attached Form S. If there is a substantial change in a PRODUCTION UNIT from one reporting year to the next, UCTION UNIT must be given a new, unique number.
duction	This Production Unit (Process/Product Combination) is: The Same As Reported Last Year New
it #001	Describe the Process:
	Describe the Product:
	Product SIC Code: _
	Describe the Unit of Product: (Please specify if the Unit of Product has been changed since the previous reporting year.)
fuction #002	This Production Unit (Process/Product Combination) is: The Same As Reported Last Year New Describe the Process:
	Describe the Product:
	Product SIC Code: _
	Describe the Unit of Product: (Please specify if the Unit of Product has been changed since the previous reporting year.)
ection #003	This Production Unit (Process/Product Combination) is: The Same As Reported Last Year New
	Describe the Process:
	Describe the Product:
	Product SIC Code: _
	Describe the Unit of Product:
	(Please specify if the Unit of Product has been changed since the previous reporting year.)

	Page of
RM S COVE	R SHEET (continued)
Section 4.	: Facility-Wide Listing of Production Units
product or a	CTION UNIT is best thought of as the combination of the process (or activities) used to produce a product or service and the service. In this block, please identify the PRODUCTION UNITS at the facility, then use the production unit number to report usage in the attached Form S. If there is a substantial change in a PRODUCTION UNIT from one reporting year to the next, UCTION UNIT must be given a new, unique number.
fuction	This Production Unit (Process/Product Combination) is: The Same As Reported Last Year New Describe the Process:
	Describe the Product:
	Product SIC Code: _
-	Describe the Unit of Product: (Please specify if the Unit of Product has been changed since the previous reporting year.)
ection #:	This Production Unit (Process/Product Combination) is: The Same As Reported Last Year New Describe the Process:
	Describe the Product:
	Product SIC Code: _
	Describe the Unit of Product: (Please specify if the Unit of Product has been changed since the previous reporting year.)
ection	This Production Unit (Process/Product Combination) is: The Same As Reported Last Year New
	Describe the Process:
	Describe the Product:
	Product SIC Code: _ _ _

DEP FACILITY ID #:

DEP FACILITY ID#	
------------------	--

Massachusetts Department of Environmental Protection TURA REPORT - FORM S

D _	Toxic Use Reduction Act - Chemical Usage Facility-Wide & by Production Units
***	Section 1: Facility-Wide Usage of Listed Chemical
1.1	Chemical Abstract Service (CAS) Number (if applicable) Chemical Identification (from Form R)
1.2	Facility-Wide Usage of Chemical Identified in 1.1 above. Enter total amount (in POUNDS) for each applicable category. NOTE: Byproduct (item 1.24) generally means all wastes containing the listed chemical before the waste is treated or recycled. Read the instructions carefully, however, before completing this section.
	1.2d Generated as Byproduct:
	1.2b Processed: 1.2e Shipped in or as Product:
	1.2c Otherwise Used:
1.3	OPTIONAL QUESTION. When the amounts reported in 1.2a, 1.2b, and 1.2c are added together, the sum will — in many cases — equal the sum of 1.2d and 1.2e. In other words, the left and right columns will often form a "materials balance." If the two columns are not in approximate balance, you may use this block to explain why. Mark all the reasons that apply.
	Chemical was recycled on site. Chemical was consumed or transformed.
	Chemical was held in inventory Chemical is a compound.
	Other (explain):
.4	OPTIONAL QUESTION: Did anything non-routine occur at your facility during the reporting year which affected the data reported?
	YES NO If YES, you may use this space to comment:
	Section 2: Chemicals Used in Waste Treatment Units
.1	Is this chemical used to treat waste or control pollution? YES NO
	If YES, enter the quantity of chemical code for the amount used to treat waste or control pollution:
	OPTIONAL - You may enter the amount:
	Section 3: TURA Report on Production Unit #: (Enter # from the Form S Cover Sheet.)
	3.1 Base Year: 3.4 Byproduct Reduction Index:
	3.2 Quantity of Chemical Code: 3.5 Emissions Reduction Index:
	3.3 Taxics Use Reduction Techniques Code: _
	If there has been a change from one reporting year to the current year in a (1) base year, and/or (2) estimating methods (that significantly alter previously reported data) for this PRODUCTION UNIT REPORT, describe the change:

TURA Report on Production	Unit #: (Enter #	from the Form S Cover She	et.)
3.1 Base Year:	3.4 Byproduct Reduction Index:		
3.2 Quantity of Chemical Code: []	3.5 Emissions Reduction Index:		*.
3.3 Toxics Use Reduction Techniques Co	de: _		_ _
If there has been a change from one reporti alter previously reported data) for this PR			hods (that significant
TURA Report on Production	Unit #: (Enter #	from the Form S Cover Shee	et.)
3.1 Base Year:	3.4 Byproduct Reduction Index	· · · · · · · · · · · · · · · · · · ·	
3.2 Quantity of Chemical Code: {	3.5 Emissions Reduction Index:	· · · · · · · · · · · · · · · · · · ·	
3.3 Toxics Use Reduction Techniques Co	se: - _		
alter previously reported data) for this PRC	DDUCTION UNIT REPORT, describe the	e change:	
			L)
TURA Report on Production			t.)
TURA Report on Production (Unit #: (Enter # f		t.)
TURA Report on Production 6	Jnit #: (Enter # f 3.4 Byproduct Reduction Index: 3.5 Emissions Reduction Index:	rom the Form S Cover Sheet	
TURA Report on Production 3.1 Base Year: 3.2 Quantity of Chemical Code: 3.3 Toxics Use Reduction Techniques Cod If there has been a change from one reporting	Juit #: (Enter # f 3.4 Byproduct Reduction Index: 3.5 Emissions Reduction Index: ie: ig year to the current year in a (1) base year	rom the Form S Cover Sheet	
TURA Report on Production 3.1 Base Year: 3.2 Quantity of Chemical Code:	Juit #: (Enter # f 3.4 Byproduct Reduction Index: 3.5 Emissions Reduction Index: ie: ig year to the current year in a (1) base year	rom the Form S Cover Sheet	
TURA Report on Production 3.1 Base Year: 3.2 Quantity of Chemical Code: 3.3 Toxics Use Reduction Techniques Cod If there has been a change from one reporting alter previously reported data) for this PRO	Juit #: (Enter # f 3.4 Byproduct Reduction Index: 3.5 Emissions Reduction Index: 4: 5: g year to the current year in a (1) base year DUCTION UNIT REPORT, describe the	rom the Form S Cover Sheet	_ lods (that significant)
TURA Report on Production 3.1 Base Year: 3.2 Quantity of Chemical Code: 3.3 Toxics Use Reduction Techniques Cod If there has been a change from one reporting	Juit #: (Enter # f 3.4 Byproduct Reduction Index: 3.5 Emissions Reduction Index: 4: 5: g year to the current year in a (1) base year DUCTION UNIT REPORT, describe the	rom the Form S Cover Sheet	_ lods (that significant)
TURA Report on Production 3.1 Base Year: 3.2 Quantity of Chemical Code: 3.3 Toxics Use Reduction Techniques Cod If there has been a change from one reporting alter previously reported data) for this PRO	Juit #: (Enter # f 3.4 Byproduct Reduction Index: 3.5 Emissions Reduction Index: 4: 5: g year to the current year in a (1) base year DUCTION UNIT REPORT, describe the	rom the Form S Cover Sheet	_ lods (that significant)
3.1 Base Year:	Juit #: (Enter # f	rom the Form S Cover Sheet	_ lods (that significant)
TURA Report on Production 3.1 Base Year: 3.2 Quantity of Chemical Code: 3.3 Toxics Use Reduction Techniques Cod If there has been a change from one reporting alter previously reported data) for this PRO TURA Report on Production	Juit #: (Enter # f 3.4 Byproduct Reduction Index: 3.5 Emissions Reduction Index: ie: _	rom the Form S Cover Sheet	_ lods (that significant)

DEP FACILITY ID#:

Toxics Use Reduction Techniques Matrix

In this matrix, toxic use reduction techniques mark the rows and production operations head the columns. Within the matrix, a two-digit code appears the intersection of each row and column.

If a technique as applied to a production operation accounted for an increase of five or more points in the byproduct reduction index between the base year and reporting year, enter the code for that matrix cell in BLOCK 3.4 of PORM S. Enter all the codes that apply.

You may enter a "miscellaneous" code if two or more techniques (not otherwise entered) together accounted for an increase of five or more points.

	terials adling/Storage	Processing Operations	Finished Goods Handling
INPUT SUBSTITUTION: Changing the raw materials of product to use non- or less toxic materials.	, 10	11	12
PRODUCT REPORMULATION: Reformular redesigning end-products to be non-or less toxic upon use, release, or disposal.	lating 20	21	22
PRODUCTION UNIT REDESIGN OR MODIFICATION: Using production units of a different design than those used previously.	30	31	32
PRODUCTION UNIT MODERNIZATION: Upgrading or replacing production unit equipment or methods.	40	41	42
IMPROVED OPERATION & MAINTENAN OF PRODUCTION UNIT EQUIPMENT & METHODS Modifying existing equipment/ methods by such steps as improved housekeeping, system adjustments or process/product inspections.	NCE 50	51	52
RECYCLING, REUSE, OR EXTENDED USE OF TOXICS: Using equipment/method that are integral to the production unit.	60 Is	61	62
MANAGEMENT TECHNIQUE OF USING BYPRODUCT AS PRODUCT: Use of bypr without further treatment when the byproduct would have otherwise been released, treated, or shipped off-site for recycling/reuse		71	72
MISCELLANBOUS	80	81	82

BYPRODUCT REDUCTION INDEX²

The byproduct reduction index is calculated as follows:

$$BRI = 100 \times A - B$$

- A = Byproduct quantity in the base year

 # of units of product produced in the base year
- B = Byproduct quantity in the reporting year

 # of units of product produced in the reporting year

For instance, a paper manufacturer has sulfuric acid as a byproduct and uses square feet of paper as the "unit of product." In 1990, the company's base year, the company made 1 million square feet of paper type A and generated 50,000 lbs. of sulfuric acid as byproduct. In 1994, the company instituted toxics use reduction techniques that reduced the amount of sulfuric acid that became byproduct. That year, the company made 1.5 million square feet of paper type A and generated 25,000 lbs. of sulfuric acid as byproduct.

BRI =
$$100 \times .05 - .0166$$

$$BRI = 100 \times .668$$

BRI = 66.8 rounded up to = 67

Item 3.5: Emissions Reduction Index.

The emissions reduction index is calculated as follows:

$$ERI = 100 \times \underbrace{A - B}_{A}$$

A = Emissions quantity in the base year

of units of product produced in the base year

² If you change your definition of your production unit or your unit of product, you may need to recalculate your BRI and ERI. Please see Appendix C for further information on how to do this.

B = Emissions quantity in the reporting year # of units of product produced in the reporting year

The emissions reduction index is calculated in the same way as the BRI. However, emissions estimates should be collected while completing the Form R. If two or more production units contribute a chemical to a single waste treatment or recycling process, the emissions must be attributed to each of the different production units.

Discuss how to attribute emissions across all the production units with a process engineer and/or pollution control engineer.

BYPRODUCTS VS EMISSIONS

A byproduct is any non-product output of a listed chemical prior to handling, transfer, treatment, or release to the environment. An emission is any byproduct that leaves your facility boundary directly or after treatment or recycling.

A BYPRODUCT IS ANY AMOUNT OF A TURA CHEMICAL THAT LEAVES THE PRODUCTION UNIT AS PART OF:

Fugitive Emissions (or evaporative losses)
Wastewaters
Spent Materials Going to Onsite or Offsite Recycling
Solid Waste
Stack Emissions
Hazardous Waste

EMISSIONS UNDER TURA

Emissions include the amount of a listed chemical that:

- Goes to the sewer or public wastewater treatment facility
- Leaves the facility as fugitive or stack emissions
- Leaves the facility as solid or hazardous waste
- Leaves the facility to be treated, disposed of, or recycled off-site

Item 3.3: <u>Toxics Use Reduction Technique Code</u>. Enter the appropriate toxic use reduction technique code for any production unit that has a base year prior to 1994.

The Toxics Use Reduction Techniques Matrix (the last page of the reporting forms) lists the associated codes for the techniques.

Determine which reduction or management technique listed in the vertical axis accounts for any increase in the byproduct reduction index. Then determine where in the production operations the reduction or management technique took place -- in materials handling/storage, processing operations or finished goods handling.

If the byproduct reduction index increased by five or more points over the index for the previous year, write in the appropriate code in the matrix. If two or more reduction techniques together accounted for a five or more point increase, you may enter the appropriate "miscellaneous" code. It will be more useful, however, if you list all the applicable codes.

The following example illustrates how to fill out the matrix.

TUR TECHNIQUES MATRIX

A boat manufacturer implements various toxics use reduction techniques in calendar year 1994. The byproduct reduction index for 1994 is 18, an increase of 12 over the previous year (1993), in which the index was 6.

Six points of the increase are due to a change in raw materials in which a non-toxic substance was substituted for a toxic substance. Under the process operations column, 11 is chosen for input substitution.

The other six points resulted from a combination of toxics use reduction techniques: toxics reuse and improved maintenance. Since neither of these changes accounted for 5 points individually, the firm could mark 81 in the process operation column for miscellaneous.

As an alternative, it could mark 61 (toxics reuse) an 51 (improved operations and maintenance).

As a final step in Section 3, report any changes in waste estimation methods or a base year. You may also use this space to explain any unusual circumstances, such as a spill or accident that influenced your BRI or ERI.

WHAT IS TOXICS USE REDUCTION?

Toxics Use Reduction is defined in the Toxic Use Reduction Act of 1989 as:

In-plant changes in production processes or raw materials that reduce, avoid, or eliminate the use of toxic or hazardous substances or generation of hazardous byproducts per unit of product, so as to reduce risks to the health of worker, consumers, or the environment without shifting risks between workers, consumers or parts of the environment. Toxic use reduction shall be achieved through any of the following techniques:

Input substitution is replacing a toxic or hazardous substance or raw material used in a production unit with a non-toxic or less toxic substance.

- Aqueous cleaning instead of solvent cleaning
- Soy based inks instead of chemical inks
- Alkaline plating baths instead of cyanide baths

Product reformulation is substituting for an existing end-product, an end-product which is non-toxic or less toxic upon use, release or disposal.

- Latex based coatings instead of oil based coatings
- Unbleached paper instead of bleached paper

Production Unit Redesign or Modification is developing and using production units of a different design than those currently used.

- Ozonation instead of chlorine based system for controlling corrosion
- Electrostatic powder paint spray instead of solvent based paint.

Production Unit Modernization is upgrading or replacing existing production unit equipment and methods with other equipment and methods based on the same production unit.

- Continuous closed system instead of batch process
- Countercurrent and reactive rinsing instead of single tank rinsing in electroplating

Improved Operation and Maintenance of Production Unit Equipment is modifying or adding to existing equipment or methods including, but not limited to, such techniques as improved housekeeping practices, system adjustments, product and process inspections, or production unit control equipment or methods.

- Installation of Floating Roofs on Chemical Storage Tanks (instead of no roofs)
- Strict inventory controls to prevent expiration of chemicals

Recycling, Reuse, or Extended Use of Toxics is by using equipment or methods which become an integral part of the production unit of concern, including but not limited to filtration and other closed loop methods.

- · Acid regeneration instead of disposal of acid
- Silver recycling unit instead of discharge of silver in wastewater

WHAT ISN'T TOXICS USE REDUCTION?

Toxics use reduction focuses on the production process, rather than the byproduct. In other words, "reduction" is to occur through changes in the production process, rather than through changes in how the waste generated by the production process is handled. Thus, toxic use reduction does not include any practice which promotes or requires, or which is:

- Shifting the toxic discharge from one medium to another (air to water)
- Recycling, unless it is integral to the production process
- · Treatment of toxic waste to make it less toxic or non-toxic and
- Incineration

This section contains a list of all the chemicals that have ever been reported by TURA facilities. Note that the list does not include chemicals that are required to be reported but have never been reported by a TURA facility. The list is ordered by the year the chemical was first required to be reported under TURA. The first group of chemicals, with Year-Added Date of 00, are chemicals that were reported by facilities but were never required to be reported. These were reported in error but have been entered into the TURA database. The list includes the Chemical Abstract Service (CAS) Number and the chemical name as it appears in the extract files.

Year-Added: 00 Number of Chemicals Added: 6

64175 DENATURED ALCOHOL

110430 METHYL (N-AMYL) KETONE

110543 HEXANE (N-HEXANE)

111762 2-BUTOXYETHANOL

614788 THIOUREA, (2-METHYLPHENYL)-

1558254 TRICHLORO(CHLOROMETHYL)SILANE

Year-Added: 90 Number of Chemicals Added: 133

1000	ANTIMONY COMPOUNDS	67663	CHLOROFORM
1001	ARSENIC COMPOUNDS	71363	BUTYLALCOHOLA
1002	BARIUM COMPOUNDS	71556	TRICHLOROETHANEA
1004	CADMIUM COMPOUNDS	74839	BROMOMETHANE
1012	CHROMIUM AND COMPOUNDS	74851	ETHYLENE
1013	COBALT COMPOUNDS	74873	CHLOROMETHANE
1015	COPPER COMPOUNDS	75058	ACETONITRILE
1016	CYANIDE COMPOUNDS	75070	ACETALDEHYDE
1022	GLYCOL ETHERS	75092	DICHLOROMETHANE
1026	LEAD COMPOUNDS	75218	ETHYLENEOXIDE
1027	MANGANESE COMPOUNDS	75274	DICHLOROBROMOMETHANE
1029	NICKEL AND COMPOUNDS	75445	PHOSGENE
1036	SELENIUM AND COMPOUNDS	75558	PROPYLENEIMINE
1037	SILVER AND COMPOUNDS	75569	PROPYLENEOXIDE
1039	ZINC AND COMPOUNDS	75650	BUTYLALCOHOLC
50000	FORMALDEHYDE	76131	FREON113
56235	CARBONTETRACHLORIDE	78922	BUTYLALCOHOLB
62533	ANILINE	78933	METHYLETHYLKETONE
62566	THIOUREA	79016	TRICHLOROETHYLENE
64675	DIETHYLSULFATE	79061	ACRYLAMIDE
67561	METHANOL	79107	ACRYLICACID
67630	ISOPROPYLALCOHOL	80057	ISOPROPYLIDENED
67641	ACETONE	80626	METHYLMETHACRYLATE

Year-Added: 90 Number of Chemicals Added: 133

	81889	CIFOODRED15	111422	DIETHANOLAMINE
	84662	DIETHYLPHTHALATE	117817	DIETHYLHEXYLPHT
	84742	BUTYLPHTHALATE	117840	DIOCTYLPHTHALATE
	85449	PHTHALICANHYDRIDE	123319	HYDROQUINONE
	85687	BUTYLBENZYLPHTHALA	123728	BUTYRALDEHYDE
•	88755	NITROPHENOLA	123911	DIOXANE
	90948	MICHLERSKETONE	127184	TETRACHLOROETHYLENE
	91087	TOLUENEDIISOCYANATEA	131113	DIMETHYLPHTALATE
	91203	NAPHTHALENE	140885	ETHYLACRYLATE
	92524	BIPHENYL	141322	BUTYLACRYLATE
	94360	BENZOYLPEROXIDE	302012	HYDRAZINE
	95487	CRESOLB	584849	TOLUENEDIISOCYANATEB
	95501	DICHLOROBENZENEA	1163195	DECABROMODIPHENYLOX
	95636	TRIMETHYLBENZ	1319773	CRESOLMIXEDISOMER
	96128	DBCP	1330207	XYLENEMIXEDISOMER
	96333	METHYLACRYLATE	1336363	POLYCHLORINATEDBIPH
	96457	ETHYLENETHIOUREA	1344281	ALUMINUMOXIDE
	97563	CISOLVENTYELLOWA	2832408	CIDISPERSEYELLOW
	98828	CUMENE	6484522	AMMONIUMNITRATE
	98953	NITROBENZENE	7429905	ALUMINUM
٠	100414	ETHYLBENZENE	7439921	LEAD
٠	100425	STYRENEMONOMER	7439965	MANGANESE
•	101144	METHYLENEBISCHLORO	7440020	NICKEL
•	101688	METHYLENEBISPHENYL	7440224	SILVER
٠	103231	BISETHYLHEXYL	7440360	ANTIMONY
٠	106423	XYLENEC	7440382	ARSENIC
٠	106467	DICHLOROBENZENEC	7440393	BARIUM
•	106503	PHENYLENEDIAMINE	7440439	CADMIUM
•	106898	EPICHLOROHYDRIN	7440473	CHROMIUM
•	107051	ALLYLCHLORIDE	7440484	COBALT
٠	107062	DICHLOROETHANE	7440508	COPPER
•	107131	ACRYLONITRILE	7647010	HYDROCHLORICACID
٠	107211	ETHYLENEGLYCOL	7664382	PHOSPHORICACID
٠	108054	VINYLACETATE	7664393	HYDROGENFLUORIDE
•	108101	METHYLISOBUTYLKĖTO	7664417	AMMONIA
٠	108316	MALEICANHYDRIDE	7664939	SULFURICACID
	108394	CRESOLA	7697372	NITRICACID
	108883	TOLUENE	7782492	SELENIUM
٠.	108907	CHLOROBENZENE	7782505	CHLORINE
	108952	PHENOL	7783202	AMMONIUMSULFATE
	109864	METHOXYETHANOL	8001589	CREOSOTE
	110805	ETHOXYETHANOL	25321226	DICHLOROBENZENEMIX
	110827	CYCLOHEXANE	26471625	TOLUENEDIISOCYANATEC
	110861	PYRIDINE		

Year-Added: 91 Number of Chemicals Added: 36 60004 ETHYLENEDIAMINE-TETRAACETIC ACID (EDTA) 60297 ETHYLETHER 64186 FORMIC ACID 64197 ACETIC ACID 75047 MONOETHYLAMINE 75207 CALCIUM CARBIDE 75503 TRIMETHYLAMINE 75638 TRIFLUOROBROMOMETHANE 75694 TRICHLOROMONOFLUOROMETHANE 75718 DICHLORODIFLUOROMETHANE 78591 ISOPHORONE 78831 ISOBUTYL ALCOHOL 79221 METHYLCHLOROFORMATE 95578 CHLOROPHENOL 98011 FURFURAL 98862 ACETOPHENONE 99558 NITROTOLUIDINE 107153 ETHYLENEDIAMINE 108247 ACETIC ANHYDRIDE 108463 RESORCINOL 108941 CYCLOHEXANONE 108985 THIOPHENOL 109068 PICOLINE 109897 DIETHYLAMINE 109999 FURAN, TETRAHYDRO-.110167 MALEICACID 110178 FUMARIC ACID 110190 BUTYL ACETATE-I 121448 TRIETHYLAMINE 123864 BUTYLACETATE 124049 ADIPIC ACID 124403 DIMETHYLAMINE 126987 METHACRYLONITRILE 141786 ETHYLACETATE 143339 SODIUM CYANIDE (Na(CN))

Year-Added: 92 Number of Chemicals Added: 13

353593 BROMOCHLORODIFLUOROMETHANE

(HALON 1211)

156605 DICHLOROETHYLENE

540885 BUTYL ACETATE-T

594423 PERCHLOROMETHYLMERCAPTAN

1066337 AMMONIUMBICARBONATE

1309644 ANTIMONYTRIOXIDE

Year-Added: 92 Number of Chemicals Added: 13

1310583 POTASSIUMHYDROXIDE

1310732 SODIUM HYDROXIDE

1314132 ZINC OXIDE FUME

1336216 AMMONIUMHYDROXIDE

1341497 AMMONIUMBIFLUORIDE

7440235 SODIUM

7440666 ZINC

7558794 SODIUM PHOSPHATE, DIBASIC

Year-Added: 93 Number of Chemicals Added: 36

14639986 ZINCAMMONIUM CHLORIDE 1033 PHTHALATE ESTERS 25155300 SODIUM 7601549 SODIUM PHOSPHATE, TRIBASIC DODECYLBENZENESULFONATE 7631905 SODIUM BISULFITE 27176870 DODECYLBENZENESULFONIC ACID 30525894 PARAFORMALDEHYDE

7632000 SODIUM NITRITE 7681494 SODIUM FLUORIDE 7681529 SODIUM HYPOCHLORITE 7705080 FERRICCHLORIDE 7720787 FERROUSSULFATE 7738945 CHROMIC ACID 7758294 SODIUM PHOSPHATE, TRIBASIC 7758943 FERROUSCHLORIDE 7758976 LEAD CHROMATE 7758987 CUPRIC SULFATE 7761888 SILVERNITRATE 7773060 AMMONIUMSULFAMATE 7778543 CALCIUM HYPOCHLORITE 7782630 FERROUSSULFATE 7790945 CHLOROSULFONIC ACID 8014957 SULFURICACID (FUMING) 10022705 SODIUM HYPOCHLORITE 10025873 PHOSPHORUS OXYCHLORIDE 10028225 FERRICSULFATE 10043013 ALUMINUMSULFATE 10099748 LEADNITRATE

10045893 FERROUSAMMONIUM SULFATE

10101538 CHROMIC SULFATE

10101890 SODIUM PHOSPHATE, TRIBASIC

10102439 NITRICOXIDE

10102440 NITROGEN DIOXIDE

10588019 SODIUM BICHROMATE

12125018 AMMONIUMFLUORIDE

12125029 AMMONIUMCHLORIDE

Appendix B2 Chemical Groups

This section contains a list of the chemical in the chemical groups that were analyzed. The list includes the name of the group, the Chemical Abstract Number (CAS), the first year that the chemical was required to be reported under TURA, and the name of the chemical as it appears in the TURA extract files.

Chemical Gro	up:	Acids	Chemical Group:	Carcinogens
7647010	90	HYDROCHLORIC ACID	75070 90	ACETALDEHYDE
7697372	90	NITRIC ACID	79061 90	ACRYLAMIDE
7664382	90	PHOSPHORIC ACID	107131 90	ACRYLONITRILE
7664939	90	SULFURIC ACID	7440382 90	ARSENIC
			7440439 90	CADMIUM
		•	56235 90	CARBONTETRACHLORIDE
Chemical Gro	up:	Metals	67663 90	CHLOROFORM
			95578 91	CHLOROPHENOL
7440360	90	ANTIMONY	7440473 90	CHROMIUM
1000	90	ANTIMONY COMPOUNDS	8001589 90	CREOSOTE
7440382	90	ARSENIC	106467 90	DICHLOROBENZENEC
1001	90	ARSENIC COMPOUNDS	25321226 90	DICHLOROBENZENEMIX
7440393	90	BARIUM	107062 90	DICHLOROETHANE
1002	90	BARIUM COMPOUNDS	75092 90	DICHLOROMETHANE
7440439	90	CADMIUM	117817 90	DIETHYLHEXYLPHT
1004	90	CADMIUM COMPOUNDS	64675 90	DIETHYLSULFATE
7440473	90	CHROMIUM	123911 90	DIOXANE
1012	90	CHROMIUM & COMPOUNDS	106898 90	EPICHLOROHYDRIN
7440484	90	COBALT	140885 90	ETHYLACRYLATE
1013	90	COBALT COMPOUNDS	75218 90	ETHYLENEOXIDE
7440508	90	COPPER	96457 90	ETHYLENETHIOUREA
1015	90	COPPER COMPOUNDS	50000 90	FORMALDEHYDE
7439921	90	LEAD	302012 90	HYDRAZINE
1026	90	LEAD COMPOUNDS	7439921 90	LEAD
7439965	90	MANGANESE	7758976 93	LEADCHROMATE
1027	90	MANGANESE COMPOUNDS	101144 90	METHYLENEBISCHLORO
7440020	90	NICKEL	90948 90	MICHLERSKETONE
1029	90	NICKEL AND COMPOUNDS	7440020 90	NICKEL
7782492	90	SELENIUM	1029 90	NICKEL AND COMPOUNDS
1036	90	SELENIUM AND COMPOUNDS	1336363 90	POLYCHLORINATEDBIPH
7440224	90	SILVER	75558 90	PROPYLENEIMINE
1037	90	SILVER AND COMPOUNDS	75569 90	PROPYLENEOXIDE
7440666	92	ZINC	100425 90	STYRENEMONOMER
1039	90	ZINC AND COMPOUNDS	127184 90	TETRACHLOROETHYLENE
			62566 90	THIOUREA
			91087 90	TOLUENEDIISOCYANATEA
			584849 90	TOLUENEDIISOCYANATEB
			26471625 90	TOLUENEDIISOCYANATEC

Chemical Gro	up:	MontrealProtocol	Chemical Gro	up:	Swedish Chemical List
76142	91	DICHLOROTETRAFLUORO-	7439976	90	MERCURY
		ETHANE(CFC-114)	7440382	90	ARSENIC
76153	91	MONOCHLOROPENTA-	1001	90	ARSENIC COMPOUNDS
		FLUOROETHANE(CFC-115)	353593	92	BROMOCHLORODIFLUORO-
124732	91	DIBROMOTETRAFLUORO-			METHANE(HALON1211)
		ETHANE(HALON 2402)	85687	90	BUTYLBENZYLPHTHALA
353593	92	BROMOCHLORODIFLUORO-	84742	90	BUTYLPHTHALATE
		METHANE(HALON1211)	7440439	90	CADMIUM
74839	90	BROMOMETHANE	1004	90	CADMIUM COMPOUNDS
56235	90	CARBONTETRACHLORIDE	8001589	90	CREOSOTE
75718	91	DICHLORODI-	75092	90	DICHLOROMETHANE
# C1 A 1	00	FLUOROMETHANE	117817	90	DIETHYLHEXYLPHT
76131	90	FREON113	84662	90	DIETHYLPHTHALATE
71556	90	TRICHLOROETHANEA	117840	90	DIOCTYLPHTHALATE
75694	91	TRICHLOROMONO-	7439921	90	LEAD
### ##################################	01	FLUOROMETHANE	7758976	93	LEADCHROMATE
75638	91	TRIFLUOROBROMO-	1026	90	LEAD COMPOUNDS
		METHANE	85449	90	PHTHALICANHYDRIDE
			127184	90	TETRACHLOROETHYLENE
Chaminal Con		Both Processed and Otherwise	79016	90	TRICHLOROETHYLENE
Chemical Gro	up:	Used Chemicals			
		Osed Chemicals	Chemical Gro		US EPA 33/50 Chemicals
67641	90	ACETONE	Chemical Gre	up.	OS El A SS/SO Chemicals
75092	90	DICHLOROMETHANE	71432	90	BENZENE
76131	90	FREON113	7439976	90	MERCURY
1022	90	GLYCOLETHERS	7440439	90	CADMIUM
67561	90	METHANOL	1004	90	CADMIUM COMPOUNDS
78933	90	METHYLETHYLKETONE	56235	90	CARBONTETRACHLORIDE
108883	90	TOLUENE	67663	90	CHLOROFORM
71556	90	TRICHLOROETHANEA	7440473	90	CHROMIUM
79016	90	TRICHLOROETHYLENE	1012	90	CHROMIUM & COMPOUNDS
1330207		XYLENEMIXEDISOMER	1016	90	CYANIDE COMPOUNDS
			75092	90	DICHLOROMETHANE
			7439921	90	LEAD
Chemical Gro	up:	Processed Chemicals	1026	90	LEAD COMPOUNDS
	•		78933	90	METHYLETHYLKETONE
117817	90	DIETHYLHEXYLPHT	108101	90	METHYLISOBUTYLKETO
107211	90	ETHYLENEGLYCOL	7440020	90	NICKEL
50000	90	FORMALDEHYDE	1029	90	NICKEL AND COMPOUNDS
109864	90	METHOXYETHANOL	127184	90	TETRACHLOROETHYLENE
101688	90	METHYLENEBISPHENYL	108883	90	TOLUENE
108101	90	METHYLISOBUTYLKETO	71556	90	TRICHLOROETHANEA
80626	90	METHYLMETHACRYLATE	79016	90	TRICHLOROETHYLENE
91203	90	NAPHTHALENE	106423	90	XYLENEC
108952	90	PHENOL	1330207	90	XYLENEMIXEDISOMER
85449	90	PHTHALICANHYDRIDE			
100425	90	STYRENEMONOMER			
26471625	90	TOLUENEDIISOCYANATEC			

List: TURA-3B

Page 1 CAS#

Mass. Toxics Use Reduction Act for 1993 and beyond

CAS#	Name Yes	r added to TURA List	CAS#	Name Year added to 1	
	ANTIMONY COMPOUNDS	1990	51-75-2	NITROGEN MUSTARD	199
	ARSENIC COMPOUNDS	1990	51-79-6	CARBAMIC ACID, ETHYL ESTER	199
	BARIUM COMPOUNDS	1990	51-79-6	ETHYL CARBAMATE	199
	BERYLLIUM COMPOUNDS	1990	51-79-6	URETHANE	199
	CADMIUM COMPOUNDS	1990	52-68-6	TRICHLORFON	199
	CHLORDANE (TECHNICAL MIXT		52-85-7	FAMPHUR	199
	METABOLITES)		53-70-3	DIBENZIA, HJANTHRACENE	199
	CHLORINATED BENZENES	1993	53-96-3	2-ACETYLAMINOFLUORENE	199
	CHLORINATED ETHANES	1993	54-11-5	NICOTINE	199
	CHLORINATED	1993	54-11-5	NICOTINE AND SALTS	199
	NAPHTHALENE		54-11-5		199
	CHLORINATED PHENOLS	1990	• • • • • • • • • • • • • • • • • • • •	-,(S)-	
	CHLOROALKYL ETHERS	1993	55-18-5	N-NITROSODIETHYLAMINE	199
	CHLOROPHENOLS	1990		BENZAMIDE	199
	CHROMIUM COMPOUNDS	1990		NITROGLYCERIN	199
	COBALT COMPOUNDS	1990	55-91-4		199
	COKE OVEN EMISSIONS	1993	55-91-4		199
	COPPER COMPOUNDS	1990	56-04-2		199
	CYANIDE COMPOUNDS	1990	56-23-5	CARBON TETRACHLORIDE	199
	DDT AND METABOLITES	1993		PARATHION	199
	DICHLOROBENZIDINE	1993	56-49-5		199
	DIPHENYLHYDRAZINE	1993		DIETHYLSTILBESTROL	199
	ENDOSULFAN AND METABOLIT	l l		BENZIAIANTHRACENE	199
	ENDRIN AND METABOLITES	1993	56-72-4		199
		1990		CYANIDES (SOLUBLE SALTS AND	199
	GLYCOL ETHERS	1993	3/-12-3	COMPLEXES)	133
	HALOETHERS	1993	57.14.7	1,1-DIMETHYL HYDRAZINE	199
	HALOMETHANES HEPTACHLOR AND METABOLITE		57-14-7	· · · · · · · · · · · · · · · · · · ·	199
		1990		HYDRAZINE, 1,1-DIMETHYL-	199
	LEAD COMPOUNDS	1990	57-14-7 57-24-9		199
	MANGANESE COMPOUNDS	1990	57-24-9		
	MERCURY COMPOUNDS			BETA-PROPIOLACTONE	199
	NICKEL COMPOUNDS	1990		CHLORDANE	199
	NITROPHENOLS	1993	••••		199
	NITROSAMINES	1993		7,12-DIMETHYLBENZ[A]ANTHRACENE	199
	PHTHALATE ESTERS	1993	58-89-9		199
	POLYBROMINATED BIPHENYLS			ISOMER)	400
	POLYNUCLEAR AROMATIC	1993	58-89-9	LINDANE	199
	HYDROCARBONS			2,3,4,6-TETRACHLOROPHENOL	199
	SELENIUM COMPOUNDS	1990		P-CHLORO-M-CRESOL	199
	SILVER COMPOUNDS	1990		N-NITROSOMORPHOLINE	199
	THALLIUM COMPOUNDS	1990	bu- uu-4	ETHYLENEDIAMINE-TETRAACETIC ACID	199
	ZINC COMPOUNDS	1990		(EDTA)	
	FORMALDEHYDE	1990		4-AMINOAZOBENZENE	199
	MITOMYCIN C	1991		4-DIMETHYLAMINOAZOBENZENE	199
	CYCLOPHOSPHAMIDE	1991	60-11-7		199
50-29-3		1991	60-29-7		199
	BENZO[A]PYRENE	1991	60-34-4		199
	RESERPINE	1991		ACETAMIDE	199
	2,4-DINITROPHENOL	1990		DIMETHOATE	199
51-43-4	EPINEPHRINE	1991		DIELDRIN	1991
51-75-2	MECHLORETHAMINE	1990	61-82-5	AMITROLE	1991

List: TURA-3B Mass. Toxics Use Reduction Act for 1993 and beyond

CAS#	Name Yes	r added to TURA List	CAS#_	Name Year added to	TURA L
62-38-4	PHENYLMERCURIC ACETATE	1991	75-00-3	· · · · · · · · · · · · · · · · · · ·	19
62-38-4	PHENYLMERCURY ACETATE	1991	75-00-3	ETHYL CHLORIDE	19
62-44-2	PHENACETIN	1991	75-01-4	VINYL CHLORIDE	19
	ETHYL METHANESULFONATE	1991		MONOETHYLAMINE	19
	ANILINE	1990		ACETONITRILE	19
	THIOACETAMIDE	1990		ACETALDEHYDE	19
	THIOUREA	1990		DICHLOROMETHANE	19
	DICHLORVOS	1990		METHYLENE CHLORIDE	19
	FLUOROACETIC ACID, SODIUM	1		CARBON DISULFIDE	19
	SODIUM FLUOROACETATE	1991		CALCIUM CARBIDE	19
	METHANAMINE,	1990		ETHYLENE OXIDE	19
04-73-3	N-METHYL-N-NITROSO-	1330		OXIRANE	19:
CO 75 0	N-NITROSODIMETHYLAMINE	1990		BROMOFORM	
		1990			199
	NITROSODIMETHYLAMINE			TRIBROMOMETHANE	19
	CARBARYL	1990		DICHLOROBROMOMETHANE	199
• • • • •	FORMIC ACID	1991		1,1-DICHLOROETHANE	19
• • • • •	ACETIC ACID	1991		1,1-DICHLOROETHYLENE	199
	DIETHYL SULFATE	1990		VINYLIDENE CHLORIDE	19
	BENZOIC ACID	1991		ACETYL CHLORIDE	19
66-75-1	URACIL MUSTARD	1991		PHOSGENE	199
67-56-1	METHANOL	1990		TRIMETHYLAMINE	19
67-63-0	ISOTROPYL ALCOHOL (MFG-STI	RONG ACID 1990	75-55-8	AZIRIDINE, 2-METHYL	199
	PROCESS)		75-55-8	PROPYLENEIMINE	199
67-64-1	ACETONE	1990	75-56-9	PROPYLENE OXIDE	199
67-66-3	CHLOROFORM	1990	75-60-5	CACODYLIC ACID	199
67-72-1	HEXACHLOROETHANE	1990	75-63-8	BROMOTRIFLUOROMETHANE (HALON	199
68-76-8	TRIAZIQUONE	1990		1301]	
70-25-7	GUANIDINE,	1991	75-63-8	HALON 1301	199
	N-METHYL-N'-NITRO-N-NITROS	30-	75-64-9	TERT-BUTYLAMINE	199
70-30-4	HEXACHLOROPHENE	1991	75-65-0	TERT-BUTYL ALCOHOL	199
71-36-3	N-BUTYL ALCOHOL	1990	75-69-4		199
	BENZENE	1990		TRICHLOROFLUOROMETHANE [CFC-11]	199
	METHYL CHLOROFORM	1990		TRICHLOROMONOFLUOROMETHANE	199
	1,1,1-TRICHLOROETHANE	1990	75-71-8		199
	ENDRIN	1991		DICHLORODIFLUOROMETHANE [CFC-12]	199
72-43-5	METHOXYCHLOR	1990		ACETONE CYANOHYDRIN	199
72-54-8		1991		ACETALDEHYDE, TRICHLORO-	199
72-55-9		1991		2,2-DICHLOROPROPIONIC ACID	
	TRYPAN BLUE	1991		PENTACHLOROETHANE	199
		1990			19
	BROMOMETHANE	1990		FREON 113	199
	METHYL BROMIDE			CFC-114	199
	ETHYLENE	1990	/6-14-2	DICHLOROTETRAFLUOROETHANE	199
	CHLOROMETHANE	1990		[CFC-114]	
	METHYL CHLORIDE	1990		CFC-115	199
	METHYL IODIDE	1990	76-15-3		199
74-89-5	MONOMETHYLAMINE	1991		[CFC-11 5]	
74-90-8	HYDROCYANIC ACID	1990	76-44-8	HEPTACHLOR	199
74-90-8	HYDROGEN CYANIDE	1990	77-47-4	HEXACHLOROCYCLOPENTADIENE	19
74-93-1	METHYL MERCAPTAN	1991	77-78-1	DIMETHYL SULFATE	19
	THIOMETHANOL	1991	78- 00-2	TETRAETHYL LEAD	19
	METHYLENE BROMIDE	1990	70 50 1	ISOPH ORONE	19

List: TURA-3B Mass. Toxics Use Reduction Act for 1993 and beyond

CAS#_	Name Year ad	ded to TURA List	CAS#	Name Year add	ed to TURA Lis
78-79-5	ISOPRENE	1991	86-88-4	THIOUREA, 1-NAPHTHALENYL-	199
78-81-9	ISO-BUTYLAMINE	1991	87-62-7	2,6-XYLIDINE	199
78-83-1	ISOBUTYL ALCOHOL	1991	87-65-0	2,6-DICHLOROPHENOL	199
	ISOBUTYRALDEHYDE	1990	87-68-3	HEXACHLORO-1,3-BUTADIENE	199
78-87-5	1,2-DICHLOROPROPANE	1990	87-68-3	HEXACHLOROBUTADIENE	199
	PROPANE 1.2-DICHLORO-	1990	87-86-5	PCP	199
	2.3-DICHLOROPROPENE	1990	87-86-5	PENTACHLOROPHENOL	199
78-92-2	SEC-BUTYL ALCOHOL	1990	88-06-2	2,4,6-TRICH' OROPHENOL	199
	METHYL ETHYL KETONE	1990	88-72-2	O-NITROTOLUENE	199
78-93-3	METHYL ETHYL KETONE (MEK)	1990	88-75-5	2-NITROPHENOL	199
	1,1-DICHLOROPROPANE	1991		DINOSEB	199
	1,1,2-TRICHLOROETHANE	1990	88-89-1	PICRIC ACID	199
	TRICHLOROETHYLENE	1990		0-ANISIDINE	199
	ACRYLAMIDE	1990	90-43-7	2-PHENYLPHENOL	199
	PROPIONIC ACID	1991		MICHLER'S KETONE	199
	ACRYLIC ACID	1990		TOLUENE 2,6-DIISOCYANATE	199
	CHLOROACETIC ACID	1990		NAPHTHALENE	199
	THIOSEMICARBAZIDE	1991		QUINOLINE	199
	PERACETIC ACID	1990		2-CHLORONAPHTHALENE	199
79-22-1	METHYL CHLOROFORMATE	1991		BETA-NAPHTHYLAMINE	199
	ISO-BUTYRIC ACID	1991	91-80-5	METHAPYRILENE	199
	1,1,2,2-TETRACHLOROETHANE	1990		3,3'-DICHLOROBENZIDINE	199
	DIMETHYLCARBAMYL CHLORIDE	1990		BIPHENYL	199
	2-NITROPROPANE	1990		4-AMINOBIPHENYL	199
	4,4'-ISOPROPYLIDENEDIPHENOL	1990		BENZIDINE	199
	CUMENE HYDROPEROXIDE	1990		4-NITROBIPHENYL	199
	HYDROPEROXIDE,	1990		SILVEX (2,4,5-TP)	199
00-13-3	1-METHYL-1-PHENYLETHYL-			2,4,5-T ACID	199
80-62-6	METHYL METHACRYLATE	1990		2,4,5-T ESTERS	199
	SACCHARIN (MANUFACTURING)	1990		2,4-D ESTERS	199
	SACCHARIN AND SALTS	1991		BENZOYL PEROXIDE	199
	WARFARIN	1991		DIHYDROSAFROLE	199
	WARFARIN, & SALTS, CONC.>0.3%	1991		SAFROLE	199
	C.I. FOOD RED 15	1990	94-75-7		199
	1-AMINO-2-METHYLANTHRAQUINO			2,4-D ACIO	
		1990		2,4-D, SALTS AND ESTERS	199
82-68-8	PENTACHLORONITROBENZENE	1990		2.4-D ESTERS	199
	QUINTOZENE	1990			199
82-68-8	ACENAPHTHENE	1991	9 4 -80-4 95-47-6	2,4-D ESTERS	199
	DIETHYL PHTHALATE	1990		BENZENE, O-DIMETHYL- O-XYLENE	199
-		1990			199
	N-BUTYL PHTHALATE	1	95-48-7		199
	DIBUTYL PHTHALATE	1990		1,2-DICHLOROBENZENE	199
	DIQUAT	1991		0-DICHLOROBENZENE	199
	PHENANTHRENE	1991		0-TOLUIDINE	199
	PHTHALIC ANHYDRIDE	1990		2-CHLOROPHENOL	199
85-68-7		1990		1,2,4-TRIMETHYLBENZENE	199
	N-NITROSODIPHENYLAMINE	1990		2,4-DIAMINOTOLUENE	199
	AZINPHOS-METHYL	1991		1,2,4,5-TETRACHLOROBENZENE	199
	GUTHION	1991		2,4,5-TRICHLOROPHENOL	199
	FLUORENE	1991	96-09-3		199
86-88-4	ANTU	1991	96-12-8	DBCP	199

List: TURA-3B Mass. Toxics Use Reduction Act for 1993 and beyond

_CAS#	Name	Year added to	TURA List	CAS#	Name Year	edded to TURA Li
96-12-8	1,2-DIBROMO-3-CHLOROP	ROPANE	1990	106-51-4	QUINONE	199
96-33-3	METHYL ACRYLATE		1990	106-88-7	1,2-BUTYLENE OXIDE	199
	ETHYLENE THIOUREA		1990	106-89-8	EPICHLOROHYDRIN	199
	C.I. SOLVENT YELLOW 3		1990	106-93-4	1,2-DIBROMOETHANE	199
•	ETHYL METHACRYLATE		1991	106-93-4	ETHYLENE DIBROMIDE	199
	FURFURAL		1991	106-99-0	1,3-BUTADIENE	199
	BENZOIC TRICHLORIDE		1990	107-02-8	ACROLEIN .	199
	BENZOTRICHLORIDE		1990	107-05-1	ALLYL CHLORIDE	199
	BENZENESULFONYL CHLO	RIDE	1991	107-06-2	1,2-DICHLOROETHANE	199
98-82-8	CUMENE		1990	107-06-2	ETHYLENE DICHLORIDE	
	ACETOPHENONE		1991	107-10-8	N-PROPYLAMINE	199
98-87-3	BENZAL CHLORIDE		1990	107-12-0	ETHYL CYANIDE	199
98-88-4	BENZOYL CHLORIDE		1990		PROPIONITRILE	199
	NITROBENZENE		1990		ACRYLONITRILE	199
	M-NITROTOLUENE		1991		ETHYLENEDIAMINE	199
	1.3.5-TRINITROBENZENE		1991		ALLYL ALCOHOL	199
	5-NITRO-O-TOLUIDINE		1991		PROPAREYL ALCOHOL	199
	5-NITRO-O-ANISIDINE		1990		CHLOROACETALDEHYDE	199
	M-DINITROBENZENE		1990	107-21-1		199
	P-NITROTOLUENE		1991	107-30-2		199
	P-NITROANILINE		1991	107-49-3		199
	4-NITROPHENOL		1990		TETRAETHYL PYROPHOSPHATE	
	P-NITROPHENOL		1990		BUTYRICACID	. 199 199
	P-DINITROBENZENE		1990		VINYL ACETATE	199
	ETHYLBENZENE		1990		VINYL ACETATE MONOMER	1990
	STYRENE		1990		METHYL ISOBUTYL KETONE	1990
	BENZYL CHLORIDE		1990		ACETIC ANHYDRIDE	199
	BENZONITRILE		1991		MALEIC ANHYDRIDE	199
	N-NITROSOPIPERIDINE	•	1990		BENZENE M-DIMETHYL-	1990
01-14-4			1990		M-XYLENE	199
	4.4'-METHYLENEBIS(2-CHL	OPOANII INEV	1990	-	M-CRESOL	
	4-BROMOPHENYL PHENYL		1991	108-46-3	** *	1990
	4.4'-METHYLENEBIS(N.	. EINEN	1990	108-60-1		199
U1-61-1	N-DIMETHYL)BENZENAMI	NE	1350		DICHLORDISOPROPYL ETHER	
01-68-8		IVE	1990	108-88-3		1990
	METHYLENEBIS(PHENYLIS	COCVANATEL	1990		CHLOROBENZENE	1990
• • • • •		-	1990			1990
	4,4'-METHYLENEDIANILINI		1990		CYCLOH E KANONE	1991
	4,4'-DIAMINODIPHENYLET		1990	108-95-2		1990
	BIS(2-ETHYLHEXYL) ADIPA	VIE.	1991	108-98-5		1991
	PHENYLTHIOUREA		- (THIOPHENOL	1991
	P-ANISIDINE		1990		2-PICOLINE	1991
	SEC-BUTYL ACETATE		1991	109-73-9		1991
	2,4-DIMETHYLPHENOL		1990	109-77-3	· · · · · · · · · · · · · · · · · · ·	1991
	BENZENE, P-DIMETHYL-		1990	109-86-4	2-METHOXYETHANOL	1990
	P-XYLENE		1990	109-89-7		1991
	P-CRESOL		1990		FURAN, TETRAHYDRO-	1991
	1,4-DICHLOROBENZENE		1990	110-00-9		1991
	P-CHLOROANILINE		1991		MALEIC ACID	1991
	P-TOLUIDINE		1991		FUMARIC ACID	1991
	P-PHENYLENEDIAMINE		1990		ISO-BUTYLACETATE	1991
06-51-4	P-BENZOQUINONE	•	1990	110-75-8	2-CHLORGETHYL VINYL ETHER	1991

List: TURA-3B
Mass. Toxics Use Reduction Act for 1993 and beyond

Page 5 CAS#

CAS	Name Year add	ed to TURA List	CAS#	Name Year added to 1	URA L
110-80-5	ETHANOL, 2-ETHOXY-	19 90	123-73-9	CROTONALDEHYDE, (E)-	19
	2-ETHOXYETHANOL	1990	123-86-4	BUTYL ACETATE	19
	CYCLOHEXANE	1990	123-91-1	1,4-DIOXANE	19
110-86-1		1990	123-92-2	ISO-AMYL ACETATE	19
	DIETHANOLAMINE	1990	124-04-9	ADIPIC ACID	19
	BIS(2-CHLOROETHYL) ETHER	1990	124-40-3	DIMETHYLAMINE	19
	DICHLOROETHYL ETHER	1990	124-41-4	SODIUM METHYLATE	19
	ETHYLENEBISDITHIOCARBAMIC ACI	D, 1991	124-48-1	CHLORODIBROMOMETHANE	19
	SALTS & ESTERS		124-73-2	DIBROMOTETRAFLUOROETHANE (HALON	
111-91-1	BIS(2-CHLOROETHOXY) METHANE	1991		2402]	
114-26-1	PROPOXUR	1990	124-73-2	HALON 2402	19
	AZASERINE	1991	126-72-7	TRIS(2,3-DIBROMOPROPYL) PHOSPHATE	19
	PROPYLENE (PROPENE)	1990	126-98-7	·	19
	ENDOSULFAN	1991	126-99-8	CHLOROPRENE	19
	DICOFOL	1990	127-18-4	PERCHLOROETHYLENE	19
	ALDICARB	1991		TETRACHLOROETHYLENE	19
	2-AMINOANTHRAQUINONE	1990		ZINC PHENOLSULFONATE	19
	DICHLONE	1991		C.L VAT YELLOW 4	19
	BIS(2-ETHYLHEXYL)PHTHALATE	1990	129-00-0		19
117-81-7		1990		1,4-NAPHTHOQUINONE	19
117-01-7 117-91-7	DI(2-ETHYLHEXYL) PHTHALATE	1990		DIMETHYL PHTHALATE	19
	N-DIOCTYLPHTHALATE	1990	131-74-8		19
	DI-N-OCTYL PHTHALATE	1990	-	2-CYCLOHEXYL-4,6-DINITROPHENOL	19
	HEXACHLOROBENZENE	1990		DIBENZOFURAN	19
	3,3'-DIMETHOXYBENZIDINE	1990		CAPTAN	19
	3,3'-DIMETHYLBENZIDINE	1990		CHLORAMBEN	19
119-93-7	_	1990	134-29-2		19
	ANTHRACENE	1990		ALPHA-NAPHTHYLAMINE	19
	ISOSAFROLE	1990	135-20-6		19
	P-CRESIDINE	1990	137-26-8		19
		1990	139-13-9		19
	CATECHOL 1,2,4-TRICHLOROBENZENE	i i	139-65-1		19
		1990	140-88-5		19
	2,4-DICHLOROPHENOL	1990			
	2,4-DINITROTOLUENE	1991		BUTYL ACRYLATE ETHYL ACETATE	19
	PYRETHRINS	1991			19
	PYRETHRINS			1,3-DICHLOROPROPANE	19
	TRIETHYLAMINE	1991		CUPRIC ACETATE	19
121- 69- 7	•	1990	142-84-7		19
	N-DIMETHYLANILINE	1001	143-33-9		19
121-75-5		1991	140.55.5	NA(CN)	
122-09-8		1991	143-50-0	KEPONE	19
	ALPHA-DIMETHYL-		145-73-3	ENDOTHALL	19
122-66-7	1,2-DIPHENYLHYDRAZINE	1990	148-82-3		19
122-66-7		1990	151-50-8		19
122-66-7		1990	151-56-4		19
123-31-9		1990	151-56-4		19
123-33-1		1991	152-16-9		19
123-38-6		1990		P-NITROSODIPHENYLAMINE	19
123-62-6	PROPIONIC ANHYDRIDE	1991	156-60-5		. 19
123-63-7		1991	156-62-7		19
	BUTYRALDEHYDE	1990	189-55-9	DIBENZ[A,I]PYRENE	19

List: TURA-3B

Mass. Toxics Use Reduction Act for 1993 and beyond

193-39-5 INDI 205-99-2 BEN 206-44-0 FLU 207-08-9 BEN 208-96-8 ACE 218-01-9 CHR 225-51-4 BEN 297-97-2 THIC 298-00-0 MET 298-00-0 MET 298-04-4 DISL 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLC 311-45-5 DIET 315-18-4 MEX 319-84-6 ALPI 319-85-7 BET 319-86-8 DEL 333-41-5 DIAI 333-50-4 CAR 353-59-3 BRO	IZ(C)ACRIDINE DIETHYL O-PYRAZINYL ISPHOROTHIOATE DNAZIN THYL PARATHION ATHION-METHYL RATE JLFOTON ED D ACETATE RAZINE IOCARPINE ORAMBUCIL RIN THYL-P-NITROPHENYL P	1992 1992 1992 1992 1992 1992 1992 1992	509-14-8 510-15-6 513-49-5 528-29-0 532-27-4 534-52-1 534-52-1 540-59-0 540-73-8 540-88-5 541-09-3 541-41-3 541-53-7 541-73-1 542-62-1 542-75-6 542-75-6	1,2-DICHLOROETHYLENE HYDRAZINE, 1,2-DIMETHYL- TERT-BUTYLACETATE URANYL ACETATE ETHYL CHLOROFORMATE DITHIOBIURET 1,3-DICHLOROBENZENE	199 199 199 199 199 199 199 199 199 199
193-39-5 INDI 205-99-2 BEN 206-44-0 FLUG 207-08-9 BEN 208-96-8 ACE 218-01-9 CHR 225-51-4 BEN 297-97-2 O,O- PHO 297-97-2 THIC 298-00-0 MET 298-00-0 PAR 298-02-2 PHO 298-04-4 DISL 300-76-5 NAL 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 305-03-3 CHLI 305-03-3 CHLI 315-18-4 MEX 319-84-6 ALPI 319-85-7 BET 319-86-8 DELT 319-86-8 DELT 319-86-8 DELT 333-41-5 DIAZ 333-41-5 DIAZ 333-41-5 DIAZ 333-41-5 DIAZ 333-50-4 CAR 353-59-3 BRO (HAI 353-59-3 BRU 460-19-5 CYA	ENO(1,2,3-CD)PYRENE IZO(B)FLUORANTHENE ORANTHENE IZO(K)FLUORANTHENE IZ	1992 1992 1992 1992 1992 1992 1992 1992	510-15-6 513-49-5 528-29-0 532-27-4 534-52-1 534-52-1 540-59-0 540-73-8 540-88-5 541-09-3 541-41-3 541-53-7 541-73-1 542-62-1 542-75-6 542-75-6	CHLOROBENZILATE SEC-BUTYLAMINE O-DINITROBENZENE 2-CHLOROACETOPHENONE 4,6-DINITRO-O-CRESOL 4,6-DINITRO-O-CRESOL AND SALTS DINITROCRESOL 1,2-DICHLOROETHYLENE HYDRAZINE, 1,2-DIMETHYL- TERT-BUTYLACETATE URANYL ACETATE ETHYL CHLOROFORMATE DITHIOBIURET 1,3-DICHLOROBENZENE BARIUM CYANIDE 1,3-DICHLOROPROPENE	199 199 199 199 199 199 199 199 199 199
205-99-2 BEN 206-44-0 FLUG 207-08-9 BEN 208-96-8 ACE 218-01-9 CHR 225-51-4 BEN 297-97-2 O,O- PHO 297-97-2 THIC 298-00-0 MET 298-00-0 PAR 298-02-2 PHO 300-76-5 NAL 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 305-03-3 CHLI 305-03-3 CHLI 315-18-4 MEX 319-84-6 ALPI 319-85-7 BET 319-86-8 DELT 319-86-8 DELT 319-86-8 DELT 333-41-5 DIAI 333-41-5 DIAI 333-41-5 DIAI 333-41-5 DIAI 333-50-4 CAR 353-59-3 BRO (HAI 353-59-3 BRU 460-19-5 CYA	IZO(B)FLUORANTHENE ORANTHENE IZO(K)FLUORANTHENE NAPHTHYLENE IYSENE IZ(C)ACRIDINE DIETHYL O-PYRAZINYL ISPHOROTHIOATE DNAZIN HYL PARATHION ATHION-METHYL IRATE IJCARPINE IOCARPINE ORAMBUCIL RIN HYL-P-NITROPHENYL F IACARBATE	1992 1992 1992 1992 1992 1992 1992 1992	513-49-5 528-29-0 532-27-4 534-52-1 534-52-1 540-59-0 540-73-8 540-88-5 541-09-3 541-41-3 541-53-7 541-73-1 542-62-1 542-75-6 542-75-6	SEC-BUTYLAMINE O-DINITROBENZENE 2-CHLOROACETOPHENONE 4,6-DINITRO-O-CRESOL 4,6-DINITRO-O-CRESOL AND SALTS DINITROCRESOL 1,2-DICHLOROETHYLENE HYDRAZINE, 1,2-DIMETHYL- TERT-BUTYLACETATE URANYL ACETATE ETHYL CHLOROFORMATE DITHIOBIURET 1,3-DICHLOROBENZENE BARIUM CYANIDE 1,3-DICHLOROPROPENE	199 199 199 199 199 199 199 199 199
206-44-0 FLUI 207-08-9 BEN 208-96-8 ACE 218-01-9 CHR 225-51-4 BEN 297-97-2 O,O- PHO 297-97-2 THIC 298-00-0 MET 298-00-0 PAR 298-02-2 PHO 298-04-4 DISL 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 305-03-3 CHLI 315-18-4 MEX 319-86-6 ALPI 319-85-7 BET 319-86-8 DEL' 319-86-8 DEL' 319-86-8 DEL' 319-86-8 DEL' 319-86-8 DIAI 333-41-5 DIAI 333-41-5 DIAI 333-41-5 DIAI 333-50-4 CAR 353-59-3 BRO (HAI 353-59-3 BRU 460-19-5 CYA	ORANTHENE IZO(K)FLUORANTHENE IZO(K)FLUORANTHENE IXO(K)FLUORANTHENE IXICIACRIDINE IZICIACRIDINE IDIETHYL O-PYRAZINYL ISPHOROTHIOATE INAZIN IHYL PARATHION ATHION-METHYL IRATE IJLFOTON ED ID ACETATE RAZINE IOCARPINE IOCARPINE IOCARPINE ORAMBUCIL RIN IHYL-P-NITROPHENYL F IACARBATE	1992 1992 1992 1992 1992 1992 1992 1992	528-29-0 532-27-4 534-52-1 534-52-1 540-59-0 540-73-8 540-88-5 541-09-3 541-41-3 541-53-7 541-73-1 542-62-1 542-75-6 542-75-6	O-DINITROBENZENE 2-CHLOROACETOPHENONE 4,6-DINITRO-O-CRESOL 4,6-DINITRO-O-CRESOL AND SALTS DINITROCRESOL 1,2-DICHLOROETHYLENE HYDRAZINE, 1,2-DIMETHYL- TERT-BUTYLACETATE URANYL ACETATE ETHYL CHLOROFORMATE DITHIOBIURET 1,3-DICHLOROBENZENE BARIUM CYANIDE 1,3-DICHLOROPROPENE	199 199 199 199 199 199 199 199 199
208-96-8 ACE 218-01-9 CHR 225-51-4 BEN 297-97-2 O,O- PHO 297-97-2 THIC 298-00-0 MET 298-00-0 PAR 298-02-2 PHO 298-04-4 DISL 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 303-00-2 ALDI 303-00-2 ALDI 311-45-5 DIET 315-18-4 MEX 319-84-6 ALPI 319-85-7 BET/ 319-86-8 DEL' 319-86-8 DEL' 319-86-8 DEL' 333-41-5 DIAZ 333-41-5 DIAZ 333-41-5 DIAZ 333-50-4 CAR 353-59-3 BRO [HAI 353-59-3 BRU 460-19-5 CYA	NAPHTHYLENE TYSENE TZ[C]ACRIDINE DIETHYL 0-PYRAZINYL SPHOROTHIOATE DNAZIN THYL PARATHION ATHION-METHYL RATE JLFOTON ED D ACETATE RAZINE IOCARPINE ORAMBUCIL RIN THYL-P-NITROPHENYL F IACARBATE	1992 1992 1992 1992 1992 1992 1992 1992	532-27-4 534-52-1 534-52-1 540-59-0 540-73-8 540-88-5 541-09-3 541-41-3 541-53-7 541-73-1 542-62-1 542-75-6 542-76-7	2-CHLOROACETOPHENONE 4,6-DINITRO-O-CRESOL 4,6-DINITRO-O-CRESOL AND SALTS DINITROCRESOL 1,2-DICHLOROETHYLENE HYDRAZINE, 1,2-DIMETHYL- TERT-BUTYLACETATE URANYL ACETATE ETHYL CHLOROFORMATE DITHIOBIURET 1,3-DICHLOROBENZENE BARIUM CYANIDE 1,3-DICHLOROPROPENE	199 199 199 199 199 199 199 199 199
218-01-9 CHR 225-51-4 BEN 297-97-2 O,O- PHO 297-97-2 THIC 298-00-0 MET 298-00-0 PAR 298-02-2 PHO 298-04-4 DISL 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 305-03-3 CHLI 315-18-4 MEX 319-84-6 ALPI 319-85-7 BET/ 319-86-8 DEL' 319-86-8 DEL' 333-41-5 DIAZ 333-41-5 DIAZ 333-41-5 DIAZ 333-41-5 DIAZ 333-50-4 CAR 353-59-3 BRO [HAI 355-57-3 BRU 460-19-5 CYA	EYSENE IZ[C]ACRIDINE DIETHYL O-PYRAZINYL ISPHOROTHIOATE DNAZIN THYL PARATHION ATHION-METHYL RATE JLFOTON ED D ACETATE RAZINE IOCARPINE ORAMBUCIL RIN THYL-P-NITROPHENYL F IACARBATE	1992 1992 1992 1992 1992 1992 1992 1992	534-52-1 534-52-1 534-52-1 540-59-0 540-73-8 540-88-5 541-09-3 541-41-3 541-53-7 541-73-1 542-62-1 542-75-6 542-75-6 542-76-7	4,6-DINITRO-O-CRESOL 4,6-DINITRO-O-CRESOL AND SALTS DINITROCRESOL 1,2-DICHLOROETHYLENE HYDRAZINE, 1,2-DIMETHYL- TERT-BUTYLACETATE URANYL ACETATE ETHYL CHLOROFORMATE DITHIOBIURET 1,3-DICHLOROBENZENE BARIUM CYANIDE 1,3-DICHLOROPROPENE	199 199 199 199 199 199 199 199
225-51-4 BEN 297-97-2 O,O- PHO 297-97-2 THIC 298-00-0 MET 298-00-0 PAR 298-02-2 PHO 298-04-4 DISL 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 309-00-2 ALDI 311-45-5 DIET 315-18-4 MEX 319-86-8 DELT 319-86-8 DELT 319-86-8 DELT 319-86-8 DELT 333-41-5 DIAI 333-41-5 DIAI 333-41-5 DIAI 333-50-4 CAR 353-59-3 BRO [HAI 353-59-3 BRU 460-19-5 CYA	IZICJACRIDINE DIETHYL O-PYRAZINYL ISPHOROTHIOATE DNAZIN THYL PARATHION ATHION-METHYL RATE JILFOTON ED D ACETATE RAZINE IOCARPINE ORAMBUCIL RIN THYL-P-NITROPHENYL F IACARBATE	1992 1992 1992 1992 1992 1992 1992 1990 1992 1992	534-52-1 534-52-1 540-59-0 540-73-8 540-88-5 541-09-3 541-41-3 541-53-7 541-73-1 542-62-1 542-75-6 542-75-6 542-76-7	4,6-DINITRO-O-CRESOL AND SALTS DINITROCRESOL 1,2-DICHLORDETHYLENE HYDRAZINE, 1,2-DIMETHYL- TERT-BUTYLACETATE URANYL ACETATE ETHYL CHLORDFORMATE DITHIOBIURET 1,3-DICHLORDBENZENE BARIUM CYANIDE 1,3-DICHLORDPROPENE	199 199 199 199 199 199 199 199
297-97-2 0,0- PHO 297-97-2 THIC 298-00-0 MET 298-00-0 PAR 298-02-2 PHO 298-04-4 DISL 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 305-03-3 CHLI 315-18-4 MEX 319-84-6 ALPI 319-85-7 BET/ 319-86-8 DELT 319-86-8 DELT 3334-88-3 DIAZ 333-41-5 DIAZ 3334-88-3 DIAZ 353-59-3 BRO (HAI 353-59-3 BRU 460-19-5 CYA	DIETHYL O-PYRAZINYL SPHOROTHIOATE DNAZIN HYL PARATHION ATHION-METHYL RATE JLFOTON ED D ACETATE RAZINE IOCARPINE ORAMBUCIL RIN HYL-P-NITROPHENYL F IACARBATE	1992 1992 1992 1992 1992 1992 1992 1990 1992 1992	534-52-1 540-59-0 540-73-8 540-88-5 541-09-3 541-41-3 541-53-7 541-73-1 542-62-1 542-75-6 542-75-6 542-76-7	DINITROCRESOL 1,2-DICHLOROETHYLENE HYDRAZINE, 1,2-DIMETHYL- TERT-BUTYLACETATE URANYL ACETATE ETHYL CHLOROFORMATE DITHIOBIURET 1,3-DICHLOROBENZENE BARIUM CYANIDE 1,3-DICHLOROPROPENE	199 199 199 199 199 199 199
PHO 297-97-2 THIC 298-00-0 MET 298-00-0 PAR 298-02-2 PHO 298-04-4 DISL 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLC 305-03-3 CHLC 311-45-5 DIET 315-18-4 MEX 319-86-8 DELT 319-86-8 DELT 319-86-8 DELT 333-41-5 DIAZ 334-88-3 DIAZ 334-88-3 DIAZ 353-59-3 BRO (HAI 353-59-3 BRU 460-19-5 CYA	SPHOROTHIOATE DNAZIN THYL PARATHION ATHION-METHYL RATE JLFOTON ED D ACETATE RAZINE IOCARPINE ORAMBUCIL RIN THYL-P-NITROPHENYL F VACARBATE	1992 1992 1992 1992 1992 1992 1990 1992 1992	540-59-0 540-73-8 540-88-5 541-09-3 541-41-3 541-53-7 541-73-1 542-62-1 542-75-6 542-75-6 542-76-7	1,2-DICHLORDETHYLENE HYDRAZINE, 1,2-DIMETHYL- TERT-BUTYLACETATE URANYL ACETATE ETHYL CHLORDFORMATE DITHIOBIURET 1,3-DICHLORDBENZENE BARIUM CYANIDE 1,3-DICHLORDPROPENE	199 199 199 199 199 199
297-97-2 THIC 298-00-0 MET 298-00-0 PAR 298-02-2 PHO 298-04-4 DISL 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 305-03-3 CHLI 305-03-3 CHLI 311-45-5 DIET 315-18-4 MEX 319-86-8 DELT 319-86-8 DELT 319-86-8 DIAI 329-71-5 2,5-0 330-54-1 DIUI 333-41-5 DIAI 333-41-5 DIAI 333-59-3 BRO (HAI 353-59-3 BRU 460-19-5 CYA	ONAZIN THYL PARATHION ATHION-METHYL RATE JLFOTON ED D ACETATE RAZINE IOCARPINE ORAMBUCIL RIN THYL-P-NITROPHENYL P VACARBATE	1992 1992 1992 1992 1992 1992 1990 1992 1990	540-73-8 540-88-5 541-09-3 541-41-3 541-53-7 541-73-1 542-62-1 542-75-6 542-75-6 542-76-7	HYDRAZINE, 1,2-DIMETHYL- TERT-BUTYLACETATE URANYL ACETATE ETHYL CHLOROFORMATE DITHIOBIURET 1,3-DICHLOROBENZENE BARIUM CYANIDE 1,3-DICHLOROPROPENE	199 199 199 199 199 199
298-00-0 MET 298-00-0 PAR 298-02-2 PHO 298-04-4 DISL 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 309-00-2 ALDI 311-45-5 DIET 315-18-4 MEX 319-84-6 ALPI 319-85-7 BET 319-86-8 DELT 319-86-8 DELT 319-86-8 DIAI 333-41-5 DIAI 333-41-5 DIAI 333-41-5 DIAI 333-59-3 BRO (HAI 353-59-3 BRU 460-19-5 CYA	THYL PARATHION ATHION-METHYL RATE JLFOTON ED D ACETATE RAZINE JOCARPINE ORAMBUCIL RIN THYL-P-NITROPHENYL P LACARBATE	1992 1992 1992 1992 1992 1992 1990 1992 1990	540-88-5 541-09-3 541-41-3 541-53-7 541-73-1 542-62-1 542-75-6 542-75-6 542-76-7	TERT-BUTYLACETATE URANYL ACETATE ETHYL CHLORDFORMATE DITHIOBIURET 1,3-DICHLORDBENZENE BARIUM CYANIDE 1,3-DICHLORDPROPENE	199 199 199 199 199
298-00-0 PAR 298-02-2 PHO 298-04-4 DISL 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 309-00-2 ALDI 311-45-5 DIET 315-18-4 MEX 319-84-6 ALPI 319-85-7 BET/ 319-86-8 DELT 319-86-8 DELT 329-71-5 2,5-0 330-54-1 DIUI 333-41-5 DIAZ 334-88-3 DIAZ 353-50-4 CAR 353-59-3 BRO (HAI 353-59-3 BRU 460-19-5 CYA	ATHION-METHYL RATE JILFOTON ED D ACETATE RAZINE IOCARPINE DRAMBUCIL RIN THYL-P-NITROPHENYL F IACARBATE	1992 1992 1992 1992 1992 1990 1992 1990	541-09-3 541-41-3 541-53-7 541-73-1 542-62-1 542-75-6 542-76-7	URANYL ACETATE ETHYL CHLOROFORMATE DITHIOBIURET 1,3-DICHLOROBENZENE BARIUM CYANIDE 1,3-DICHLOROPROPENE	199 199 199 199
298-02-2 PHO 298-04-4 DISU 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 309-00-2 ALDI 311-45-5 DIET 315-18-4 MEX 319-84-6 ALPI 319-85-7 BETA 319-86-8 DELT 319-86-8 DELT 333-41-5 DIAI 333-41-5 DIAI 333-41-5 DIAI 333-50-4 CAR 353-59-3 BRO (HAI 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA	RATE JIFOTON ED D ACETATE RAZINE JOCARPINE ORAMBUCIL RIN HYL-P-NITROPHENYL F VACARBATE	1992 1992 1992 1992 1990 1992 1992	541-41-3 541-53-7 541-73-1 542-62-1 542-75-6 542-75-6 542-76-7	ETHYL CHLOROFORMATE DITHIOBIURET 1,3-DICHLOROBENZENE BARIUM CYANIDE 1,3-DICHLOROPROPENE	199 199 199 199
298-04-4 DISU 300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 309-00-2 ALDI 311-45-5 DIET 315-18-4 MEX 319-84-6 ALPI 319-85-7 BET/ 319-86-8 DEL' 319-86-8 DIAI 329-71-5 2,5-0 330-54-1 DIUI 333-41-5 DIAI 334-88-3 DIAI 353-59-3 BRO (HAI 353-59-3 BRO 460-19-5 CYA	ULFOTON ED D ACETATE RAZINE IOCARPINE ORAMBUCIL RIN THYL-P-NITROPHENYL F VACARBATE	1992 1992 1992 1990 1992 1992	541-53-7 541-73-1 542-62-1 542-75-6 542-75-6 542-76-7	DITHIOBIURET 1,3-DICHLOROBENZENE BARIUM CYANIDE 1,3-DICHLOROPROPENE	199 199 199
300-76-5 NAL 301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 309-00-2 ALDI 311-45-5 DIET 315-18-4 MEX 319-86-8 DELT 319-86-8 DELT 319-86-8 DIAI 329-71-5 2,5-0 330-54-1 DIAI 333-41-5 DIAI 333-41-5 DIAI 333-59-3 BRO (HAI 353-59-3 BRU 460-19-5 CYA	ED D ACETATE RAZINE IOCARPINE ORAMBUCIL RIN THYL-P-NITROPHENYL P VACARBATE	1992 1992 1990 1992 1992	541-53-7 541-73-1 542-62-1 542-75-6 542-75-6 542-76-7	DITHIOBIURET 1,3-DICHLOROBENZENE BARIUM CYANIDE 1,3-DICHLOROPROPENE	199 199
301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 309-00-2 ALDI 311-45-5 DIET 315-18-4 MEX 319-84-6 ALPI 319-86-8 DEL' 319-86-8 DEL' 329-71-5 2,5-0 330-54-1 DIUI 333-41-5 DIAZ 334-88-3 DIAZ 353-59-3 BRO (HAI 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA	D ACETATE RAZINE IOCARPINE ORAMBUCIL RIN HYL-P-NITROPHENYL F ACARBATE	1992 1990 1992 1992 1990	542-62-1 542-75-6 542-75-6 542-76-7	BARIUM CYANIDE 1,3-DICHLOROPROPENE	199
301-04-2 LEAI 302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 309-00-2 ALDI 311-45-5 DIET 315-18-4 MEX 319-84-6 ALPI 319-86-8 DEL' 319-86-8 DEL' 329-71-5 2,5-0 330-54-1 DIUI 333-41-5 DIAZ 334-88-3 DIAZ 353-59-3 BRO (HAI 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA	D ACETATE RAZINE IOCARPINE ORAMBUCIL RIN HYL-P-NITROPHENYL F ACARBATE	1990 1992 1992 1990	542-75-6 542-75-6 542-76-7	1,3-DICHLOROPROPENE	199
302-01-2 HYD 303-34-4 LASI 305-03-3 CHLI 309-00-2 ALDI 311-45-5 DIET 315-18-4 MEX 319-84-6 ALPI 319-86-8 DELT 319-86-8 DELT 329-71-5 2,5-0 330-54-1 DIUI 333-41-5 DIAZ 334-88-3 DIAZ 353-50-4 CAR 353-59-3 BRO (HAI 353-59-3 BRU 460-19-5 CYA	RAZINE IOCARPINE ORAMBUCIL RIN 'HYL-P-NITROPHENYL P 'ACARBATE	1992 1992 1990	542-75-6 542-76-7		
303-34-4 LASI 305-03-3 CHLI 309-00-2 ALDI 311-45-5 DIET 315-18-4 MEX 319-84-6 ALPI 319-86-8 DELT 319-86-8 DELT 329-71-5 2,5-0 330-54-1 DIUI 333-41-5 DIAZ 334-88-3 DIAZ 353-50-4 CAR 353-59-3 BRO (HAI 357-57-3 BRU 460-19-5 CYA	IOCARPINE ORAMBUCIL RIN HYL-P-NITROPHENYL P IACARBATE	1992 1990	542-76-7	1,3-DICHLOROPROPYLENE	
305-03-3 CHLI 309-00-2 ALDI 311-45-5 DIET 315-18-4 MEX 319-84-6 ALPI 319-86-8 DELT 319-86-8 DELT 329-71-5 2,5-0 330-54-1 DIUI 333-41-5 DIAZ 334-88-3 DIAZ 353-50-4 CAR 353-59-3 BRO (HAI 353-59-3 BRU 460-19-5 CYA	ORAMBUCIL RIN HYL-P-NITROPHENYL P ACARBATE	¹ 1990	ſ		199
311-45-5 DIET 315-18-4 MEX 319-84-6 ALPI 319-85-7 BET/ 319-86-8 DELT 329-71-5 2,5-6 330-54-1 DIUI 333-41-5 DIAZ 334-88-3 DIAZ 353-50-4 CAR 353-59-3 BRO (HAI 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA	HYL-P-NITROPHENYL P ACARBATE			3-CHLOROPROPIONITRILE	199
311-45-5 DIET 315-18-4 MEX 319-84-6 ALPI 319-85-7 BET/ 319-86-8 DELT 329-71-5 2,5-6 330-54-1 DIUI 333-41-5 DIAZ 334-88-3 DIAZ 353-50-4 CAR 353-59-3 BRO (HAI 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA	HYL-P-NITROPHENYL P ACARBATE	PHOSPHATE 1992	542-76-7	PROPIONITREE, 3-CHLORO-	199
315-18-4 MEX 319-84-6 ALPI 319-85-7 BET/ 319-86-8 DEL' 329-71-5 2,5-0 330-54-1 DIUI 333-41-5 DIAZ 334-88-3 DIAZ 353-50-4 CAR 353-59-3 BRO (HAI 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA			542-88-1	BIS(CHLOROMETHYL) ETHER	199
319-84-6 ALPI 319-85-7 BET/ 319-86-8 DEL' 329-71-5 2,5-0 330-54-1 DIUI 333-41-5 DIAZ 334-88-3 DIAZ 353-50-4 CAR 353-59-3 BRO (HAL 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA		1992	542-88-1	CHLOROMETHYL ETHER	199
319-85-7 BET/ 319-86-8 DELT 329-71-5 2,5-0 330-54-1 DIUI 333-41-5 DIAZ 353-50-4 CAR 353-59-3 BRO (HAI 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA		1992	542-88-1	DICHLOROMETHYL ETHER	199
319-86-8 DELT 329-71-5 2,5-0 330-54-1 DIUI 333-41-5 DIAZ 334-88-3 DIAZ 353-50-4 CAR 353-59-3 BRO (HAL 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA	A-BHC	1992	543-90-8	CADMIUM ACETATE	199
329-71-5 2,5-C 330-54-1 DIUI 333-41-5 DIAZ 334-88-3 DIAZ 353-50-4 CAR 353-59-3 BRO (HAI 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA		1992	544-18-3	CADMIUM ACETATE COBALTOUS FORMATE COPPER CYANDE	199
330-54-1 DIUI 333-41-5 DIAZ 334-88-3 DIAZ 353-50-4 CAR 353-59-3 BRO (HAI 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA	INITROPHENOL	1992	544-92-3	COPPER CYANIDE	199
333-41-5 DIAZ 334-88-3 DIAZ 353-50-4 CAR 353-59-3 BRO (HAI 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA		1992		M-NITROPHENCL	199
334-88-3 DIAZ 353-50-4 CAR 353-59-3 BRO (HAL 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA		1992	557-19-7	NICKEL CYANIDE	199
353-50-4 CAR 353-59-3 BRO (HAI 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA		1990	557-21-1	ZINC CYANIDE	199
353-59-3 BRO (HAI 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA	BONIC DIFLUORIDE	1992	557-34-6	ZINC ACETATE	199
(HAI 353-59-3 HAL 357-57-3 BRU 460-19-5 CYA	MOCHLORODIFLUORON	METHANE 1992	557-41-5	ZINC FORMATE	199
353-59-3 HAL 357-57-3 BRU 460-19-5 CYA	ON 1211]		563-12-2	ETHION	199
157-57-3 BRU 460-19-5 CYA		1992	563-68-8	THALLIUM(I) ACETATE	199
460-19-5 CYA		1992	2	C.I. BASIC GREEN 4	199
		1992	1 200	2,6-DINITROPHENOL	199
,00 00 1 0/11		1990		TOLUENE-2,4-DHSOCYANATE	199
465-73-6 ISO	ORIN	1992	1	1-ACETYL-2-THIOUREA	199
	AMINE	1990	592-01-8	The state of the s	199
	SOLVENT YELLOW 34	1990	592-04-1		199
	ORNAPHAZINE	1992	592-85-8		199
	MINOTOLUENE	1992	592-87-0		199
	MINOPYRIDINE	1992	593-60-2		199
	IDINE, 4-AMINO-	1992	594-42-3		199
	PENTADIENE	1992	594-42-3		199
	STARD GAS	1990	598-31-2		
	ASSIUM SILVER CYANI		1	2,6-DINITROTOLUENE	199
	/ER CYANIDE	1992	ì	PENTACHLOROBENZENE	199
	NOGEN BROMIDE	1992		3,4,5-TRICHLOROPHENOL	199
		1992	1	3,4-DINITROTOLUENE	199
506-77-4 CYA 506-87-6 AMI	NOGEN CHLORIDE		1	2,4-DIAMINOAMISQLE	199 199

List: TURA-3B Mass. Toxics Use Reduction Act for 1993 and beyond

Page 7 CAS#

CAS#	Name Yea	r added to TURA List	CAS#	Name Year added to 1	URA Li
— — — 615-53-2	N-NITROSO-N-METHYLURETHA	NE 1992	1313-27-5	MOLYBOENUM TRIOXIDE	199
621-64-7		1990	1314-20-1	THORIUM DIOXIDE	199
	N-NITROSODI-N-PROPYLAMIN	1990	1314-32-5	THALLIC OXIDE	199
624-83-9	METHYL ISOCYANATE	1990	1314-62-1	VANADIUM PENTOXIDE	199
625-16-1	TERT-AMYL ACETATE	1992	1314-80-3	SULFUR PHOSPHIDE	199
626-38-0	SEC-AMYL ACETATE	1992	1314-84-7	ZINC PHOSPHIDE	199
	AMYL ACETATE	1992	1314-84-7	ZINC PHOSPHIDE (CONC. <= 10%)	199
	MERCURY FULMINATE	1992	1314-84-7	ZINC PHOSPHIDE (CONC. > 10%)	199
	SELENOUREA	1992	1314-87-0	LEAD SULFIDE	199
	ETHANE, 1,1,1,2-TETRACHLORO	- 1992	1319-72-8	2,4,5-T AMINES	199
	AMMONIUM ACETATE	1992	1319-77-3	CRESOL (MIXED ISOMERS)	199
	O-TOLUIDINE HYDROCHLORIDE	1990	1320-18-9	2,4-D ESTERS	199
	FLUOROACETAMIDE	1992	1321-12-6	NITROTOLUENE	199
•	HEXAMETHYLPHOSPHORAMID	E 1990	1327-52-2	ARSENIC ACID	199
684-93-5	N-NITROSO-N-METHYLUREA	1990	1327-53-3	ARSENIC TRIOXIDE	199
	DIETHYLARSINE	1992		ARSENOUS OXIDE	199
	DICHLOROPHENYLARSINE	1992		XYLENE (MIXED ISOMERS)	199
	PHENYL DICHLOROARSINE	1992	1332-07-6	ZINC BORATE	199
	HEXAETHYL TETRAPHOSPHATE			ASBESTOS (FRIABLE)	199
	N-NITROSO-N-ETHYLUREA	1990	1333-83-1		199
	2-BUTENE, 1,4-DICHLORO-	1992	1335-32-6		199
	GLYCIDYLALDEHYDE	1992	1335-87-1		. 19
	CUPRIC TARTRATE	1992	1336-21-6		19
	DIAMINOTOLUENE	1992	1336-36-3		199
	C.I. SOLVENT YELLOW 14	1990	1336-36-3		199
	N-NITROSODI-N-BUTYLAMINE		1338-23-4		199
	N-NITROSOPYRROLIDINE	1992	1338-24-5		199
	2,3,6-TRICHLOROPHENOL	1992	1341-49-7		199
	2,3,5-TRICHLOROPHENOL	1992	1344-28-1		19
	ALPHA-ENDOSULFAN	1992	1464-53-5		19
	TETRACHLORVINPHOS	1990	1464-53-5	DIEPOXYBUTANE	199
		1990	1563-66-2		19
	C.I. BASIC RED 1	1992	1582-09-8		199
	HEPTACHLOR EPOXIDE	1992	1615-80-1		199
031-07-8		1992	1634-04-4		199
066-30-4		1992		2.3.7.8-TETRACHLORODIBENZO-P-DIOXIN	19
	AMMONIUM BICARBONATE	1992	1790-01-0	(TCDD)	13
072-35-1	LEAD STEARATE	1992	1762-05.4	AMMONIUM THIOCYANATE	19
111-78-0		1992	1836-75-5		19
116-54-7			1863-63-4		19
	1,3-PROPANE SULTONE	1990	1888-71-7		19
	PROPANE SULTONE	1990			19
163-19-5			1897-45-6		
185-57-5		1992	1918-00-9		19
194-65-6		1992		2,4-D ESTERS	19
1300-71-6		1992	i .	2,4,5-T ESTERS	19
1303-28-2		1992	1 .	2,4-D ESTERS	19
1303-32-8		1992		2,4-0 ESTERS	19
1303-33-9		1992	1937-37-7		19
1309-64-4		1992	1	2,4,5-T AMINES	19
	POTASSIUM HYDROXIDE	1992		MERCAPTODIMETHUR	19
	SODIUM HYDROXIDE	1992	2032-65-7	METHIOCARB	19

List: TURA-3B

Mass. Toxics Use Reduction Act for 1993 and beyond

CAS#_	Name Year a	dded to TURA List	CAS#	Name Year added	to TURA Lis
2164-17-2	FLUOMETURON	1990	1	ARSEN IC	1990
2234-13-1	OCTACHLORONAPHTHALENE	1990	7440-39-3		199
2303-16-4	DIALLATE	1990		BERYLLIUM	199
2312-35-8	PROPARGITE	1992	7440-43-9	CADMIUM	1990
2545-59-7	2,4,5-T ESTERS	1992	7440-47-3	CHROMIUM	1990
2602-46-2	C.I. DIRELT BLUE 6	1990	7440-48-4	COBALT	1990
2763-96-4	5-(AMINOMETHYL)-3-ISOXAZOLOL	. 1992	7440-50-8	COPPER	1990
2763-96-4	MUSCIMOL	1992	7440-62-2	VANADIUM (FUME OR DUST)	1996
2764-72-9	DIQUAT	1992	7440-66-6	ZINC	1992
2832-40-8	C.I. DISPERSE YELLOW 3	1990	7440-66-6	ZINC (FUME OR DUST)	. 1990
	CHLORPYRIFOS	1992	7446-08-4	SELENIUM DIOXIDE	1992
	FERRIC AMMONIUM OXALATE	1992	7446-14-2	LEAD SULFATE	1992
	2,4-D ESTERS	1992	7446-18-6	THALLIUM(I) SULFATE	1992
	AMMONIUM CITRATE, DIBASIC	1992		THALLOUS SULFATE	1992
	C.I. SOLVENT ORANGE 7	1990	7446-27-7	LEAD PHOSPHATE	1992
	AMMONIUM TARTRATE	1992		CUPRIC CHLORIDE	1992
	4-CHLORO-O-TOLUIDINE, HYDROCI			SELENIUM SULFIDE	1992
3251-23-8		1992		TITANIUM TETRACHLORIDE	1990
	NITRATE			SODIUM PHOSPHATE, DIBASIC	1992
3288-58-2	O,O-DIETHYL S-METHYL	1992		SODIUM PHOSPHATE, TRIBASIC	1993
	DITHIOPHOSPHATE			SODIUM ARSENATE	1993
3486-35-9	ZINC CARBONATE	1992		SODIUM BISULFITE	1993
	SULFOTEP	1992	7632-00-0		1993
	TETRAETHYLDITHIOPYROPHOSPHA		. 552 55 5	NITRITE	. 1000
	C.I. FOOD RED 5	1990	7645-25-2	LEAD ARSENATE	1993
	2,4,5-T AMINES	1992		ZINC CHLORIDE	1993
	CROTONALDEHYDE	1992		HYDROCHLORIC ACID	1990
	N-NITROSOMETHYLVINYLAMINE	1990		HYDROGEN CHLORIDE (GAS ONLY)	1990
	C.I. ACID GREEN 3	1990		ANTIMONY PENTACHLORIDE	1993
344-82-1	THIOUREA, (2-CHLOROPHENYL)-	1992		PHOSPHORIC ACID	1990
	CUPRIC OXALATE	1992		HYDROFLUORIC ACID	1990
	AMMONIUM OXALATE	1992		HYDROGEN FLUORIDE	1990
	AMMONIUM OXALATE	1992		AMMONIA	1990
	2,4,5-T AMINES	1992		SULFURIC ACID	
		1992		SODIUM RUORIDE	1990
	2,4,5-T AMINES	1990		SODIUM HYPOCHLORITE	1993
1484 -32-2	AMMONIUM NITRATE (SOLUTION)	1330			1993
E22 72 0		1992		NITRIC ACED	1990
533-73-9				ZINC BROMIDE	1993
	THALLOUS CARBONATE	1992 1992		FERRIC CHLORIDE	1993
	4-CHLOROPHENYL PHENYL ETHER	1992		NICKEL CHLORIDE	1993
	ENDRIN ALDEHYDE	1	7719-12-2		1993
	LEAD STEARATE	1992		FERROUS SULFATE	1993
	ALUMINUM (FUME OR DUST)	1990	7722-64-7		1993
	LEAD	1990		PHOSPHORUS	1993
439-96-5	MANGANESE	1990		PHOSPHORUS (YELLOW OR WHITE)	1990
7439-97-6	MERCURY	1990		ZINC SULFATE	1993
7440-02-0	NICKEL	1990		CHROMIC ACID	1993
	SILVER	1990	7758-29-4		1993
7440-23-5		1992		FERROUS CHLORIDE	1993
	THALLIUM	1990		LEAD CHLORIDE	1993
7440-36-0	ANTIMONY	1990	77 58-98-7	CUPRIC SULFATE	1993

List: TURA-3B Mass. Toxics Use Reduction Act for 1993 and beyond

_CAS#	Name Year adde	d to TURA List	CAS	Name Year added	to TURA Li
761-88-8	SILVER	1993	8001-35-2	TOXAPHENE	199
	NITRATE		8001-58-9	CREOSOTE	199
773-06-0	AMMONIUM SULFAMATE		8003-19-8	DICHLOROPROPANE -	199
775-11-3	SODIUM CHROMATE	1993		DICHLOROPROPENE (MIXTURE)	
778-39-4	ARSENIC ACID	1993	8003-34-7	PYRETHRINS	199
778-44-1	CALCIUM ARSENATE	1993	8014-95-7	SULFURIC ACID (FUMING)	199
778-50-9	POTASSIUM BICHROMATE	1993	10022-70-5	SODIUM HYPOCHLORITE	199
778-54-3	CALCIUM HYPOCHLORITE	1993	10025-87-3	PHOSPHORUS OXYCHLORIDE	199
779-86-4	ZINC HYDROSULFITE	1993	10025-91-9	ANTIMONY TRICHLORIDE	199
779-88-6	ZINC	1993	10026-11-6	ZIRCONIUM TETRACHLORIDE	199
	NITRATE		10028-22-5	FERRIC SULFATE	199
782-41-4	FLUORINE	1993	10031-59-1	THALLIUM SULFATE	199
782-49-2	SELENIUM	1990	10034-93-2	HYDRAZINE SULFATE	199
782-50-5	CHLORINE	1990	10039-32-4	SODIUM PHOSPHATE, DIBASIC	199
782-63-0	FERROUS SULFATE	1993	10043-01-3	ALUMINUM SULFATE	199
782-82-3	SODIUM SELENITE	1993	10045-89-3	FERROUS AMMONIUM SULFATE	199
782-86-7	MERCUROUS	1993		MERCURIC	199
	NITRATE			NITRATE	
783-00-8	SELENIOUS ACID	1993	10049-04-4	CHLORINE DIOXIDE	199
783-06-4	HYDROGEN SULFIDE	1993	10049-05-5	CHROMOUS CHLORIDE	199
783-20-2	AMMONIUM SULFATE (SOLUTION)	1990	10099-74-8	LEAD	199
	MERCURIC SULFATE	1993		NITRATE	
	LEAD FLUORIDE	1993	10101-53-8	CHROMIC SULFATE	199
	ZINC FLUORIDE	1993	10101-63-0	LEAD IODIDE	199
	FERRIC FLUORIDE	1993	10101-89-0	SODIUM PHOSPHATE, TRIBASIC	.199
	ANTIMONY TRIFLUORIDE	1993	10102-06-4		199
	ARSENOUS TRICHLORIDE	1993		NITRATE	
	LEAD ARSENATE	1993	10102-18-8	SODIUM SELENITE	199
	POTASSIUM ARSENATE	1993	ì	NITRIC OXIDE	199
	SODIUM ARSENITE	1993		NITROGEN DIOXIDE	199
	SODIUM PHOSPHATE, TRIBASIC	1993	1	THALLIUM(I)	199
	MEVINPHOS	1993	15.55	NITRATE	
	NICKEL SULFATE	1993	10102-48-4	LEAD ARSENATE	199
	BERYLLIUM CHLORIDE	1993		CADMIUM CHLORIDE	199
	BERYLLIUM FLUORIDE	1993	i	POTASSIUM ARSENITE	199
	BERYLLIUM	1993		SODIUM PHOSPHATE, TRIBASIC	199
767-33-3	NITRATE	1333		SODIUM PHOSPHATE, DIBASIC	199
700 00 0	AMMONIUM CHROMATE	1993	1	AMMONIUM BISULFITE	199
788-98-9	POTASSIUM CHROMATE	1993	10196-04-0		199
789-00-6		1993	10361-89-4		199
	STRONTIUM CHROMATE		10380-29-7		199
	AMMONIUM BICHROMATE	1993	10380-29-7	MERCUROUS	199
	CADMIUM BROMIDE	1993	10413-73-3	NITRATE	133
789-43-7	COBALTOUS BROMIDE	1993	10421-48-4	FERRIC	199
	ANTIMONY TRIBROMIDE	1993	10421-40-4	NITRATE	133
	CHLOROSULFONIC ACID	1993	10644.72 6	NITROGEN DIOXIDE	199
791-12-0	THALLIUM CHLORIDE TLCL	1993	10544-72-6		
	THALLOUS CHLORIDE	1993	10588-01-9		199
	PHOSPHINE	1993	11096-82-5		199
	AMMONIUM VANADATE	1993	11097-69-1		199
	CAMPHECHLOR	1990	11104-28-2	·	199
001 25 2	CAMPHENÈ, OCTACHLORO-	19 9 0	11115-74-5	CHROMIC ACID	199

List: TURA-3B

Mass. Toxics Use Reduction Act for 1993 and beyond

CAS#_	Name Year a	dded to TURA List	CAS#	Name Year added to	TURA List
11141-16-5	AROCLOR 1232	1993	23950-58-5	BENZAMIDE, 3,5-DICHLORO-N-(1,	199
2002-03-8	CUPRIC ACETOARSENITE	1993		1-DIMETHYL-2-PROPYNYL)-	
2002-03-8	PARIS GREEN	1993	25154-54-5	DINITROBENZENE (MIXED ISOMERS)	199
2039-52-0	SELENIOUS ACID, DITHALLIUM(1+) SALT 1993	25154-55-6	NITROPHENOL (MIXED ISOMERS)	1993
	NICKEL HYDROXIDE	1993	25155-30-0		199
2122-67-7		1990	25167-82-2	TRICHLOROPHENOL	199
	AMMONIUM FLUORIDE	1993	25168-15-4	2,4,5-T ESTERS	1993
	AMMONIUM CHLORIDE	1993	25168-26-7	2,4-D ESTERS	1993
	AMMONIUM SULFIDE	1993	25321-14-6		199
2427-38-2		1990	25321-22-6		199
	AROCLOR 1248	1993	25321-22-6	· -	199
	AROCLOR 1016	1993	25376-45-8	·	1990
	SULFUR MONOCHLORIDE	1993	25376-45-8		1990
	NICKEL CARBONYL	1993	25550-58-7	· - · · · · · -	1993
-	2,4,5-T SALTS	1993		CALCIUM DODECYLBENZENESULFONATE	1993
	BERYLLIUM	1993		TOLUENEDIISOCYANATE (MIXED	1990
JJ37-33-4	NITRATE	.000		ISOMERS)	1330
274E_8Q_Q	ZIRCONIUM	1993	26628-22-8		1990
3/40-03-3	NITRATE	1000	26638-19-7		1993
2765_10_0	CALCIUM CHROMATE	1993	27176-87-0		1993
	LEAD FLUOBORATE	1993		THETHANOLAMINE DODECYLBENZENE	1993
	AMMONIUM FLUOBORATE	1993	2/363-41-7	SULFONATE	1330
	SEC-BUTYLAMINE	1993	27774-13-6	VANADYL SULFATE	1993
	COBALTOUS SULFAMATE	1993		ANTIMONY POTASSIUM TARTRATE	1993
4216-75-2		1993		PARAFORMALDEHYDE	1993
4210-13-2	NITRATE	1333		2,4,5-TP ESTERS	1993
4259_40_2	AMMONIUM OXALATE	1993		BETA-ENDOSULFAN	1993
	LITHIUM CHROMATE	1993	36478-76-9		1993
	AMMONIUM TARTRATE	1993	30470-70-3	NITRATE	1330
	ZINC AMMONIUM CHLORIDE	1993	37211-05-5	NICKEL CHLORIDE	1993
	ZINC AMMONIUM CHLORIDE	1993		2,4-DIAMINOANISOLE SULFATE	1990
	ZIRCONIUM SULFATE	1993		THIOFANOX	1993
	NICKEL AMMONIUM SULFATE	1993		ISOPROPANOLAMINE DODECYLBENZENE	1993
	LEAD SULFATE	1993	72307-10-1	SULFONATE	1553
	2.3.4-TRICHLOROPHENOL	1993	52628-25-8	ZINC AMMONIUM CHLORIDE	1993
	C.I. DIRECT BROWN 95	1990		LEAD STEARATE	
		1990		CALCIUM ARSENITE	1993
	N-NITROSONORNICOTINE		53467-11-1		1993
6721-80-5		1993	53469-21-9	•	1993
6/52-77-5	ETHANIMIDOTHIOIC ACID,	1993	55488-87-4		1993
ATER 37 -	N-[[METHYLAMINO]CARBONYL]	1002			1993
6752-77-5		1993	56189-09-4		1993
6871-71-9	ZINC SILICOFLUORIDE	1993	01/32-01-2	2,4,5-T ESTERS	1993
6919-19-0	AMMONIUM SILICOFLUORIDE	1993			
6923-95-8	ZIRCONIUM POTASSIUM FLUORID				
8883-66-4	D-GLUCOSE, 2-DEOXY-2- [[(METHYLNITROSOAMINO)-CARB AMINO]-	1993 ONYL]			
0816-12-0	OSMIUM OXIDE OSO4 (T-4)-	1990			
0816-12-0	OSMIUM TETROXIDE	1990			
	DAUNOMYCIN	1993			
0859-73-8	ALUMINUM PHOSPHIDE	1993			

This section contains a list of all the SIC codes that were reported for production units or facilities. The SIC codes are grouped into "User Segment" groups. This is a draft experimental grouping of 2-, 3-, and 4-digit SIC codes prepared by the TURA User Segment Advisory Subcommittee. (see Chapter 7) It should be noted that this list of groupings is an early draft and has not undergone any review.

SIC Group: 17 Special Trade Contractors Roofing, Siding, And Sheet Metal Work SIC Group: 20 Food & Kindred Products Condensed and evaporated milk 2024 Ice cream and frozen desserts 2026 Fluid milk Canned fruits and vegetables 2033 2035 Pickles, sauces, and salad dressings Frozen fruits, fruit juices and vegetables 2037 2038 Frozen specialties Bread cake, and related products 2051 2066 Chocolate and cocoa products Animal and marine fats and oils 2077 2086 Bottled and canned soft drinks 2087 Flavoring extracts and syrups Canned and cured fish and seafoods 2091 Fresh or frozen prepared fish 2092 2098 Macaroni and spaghetti Food preparations 2099 SIC Group: 22 Misc. Textile Mill Products 2211 Broadwoven fabric mills, cotton 2221 Broadwoven fabric mills, man-made 2231 Broadwoven fabric mills, wool 2259 Knitting mills 2284 Thread mills 2295 Coated fabrics, not rubberized 2297 Nonwoven fabrics 2298 Cordage and twine 2299 Textile goods SIC Group: 226 Dyeing & Finishing Textiles 2261 Finishing plants, cotton 2262 Finishing plants, man-made 2269 Finishing plants SIC Group: 23 Apparel & Other Finished Textile Prod. Hats, caps, and millinery 2399 Fabricated textile products

SIC Group:	24 Lumber&Wood Prod. E	xcept Furniture	
2491	Wood kitchen cabinets Wood preserving Wood products		
SIC Group:	25 Furniture & Fixtures		
2515 2519 2521 2522 2531	Wood household furniture Mattresses and bedsprings Household furniture Wood office furniture Office furniture, except woo Public building and related Furniture and fixtures	od ,	
SIC Group:	26 Misc. Paper & Allied Pr	oducts	
2652 2653	Paperboard mills Set-up paperboard boxes Corrugated and solid fiber Fiber cans, drums, and sin Sanitary Food Containers Folding paperboard boxes		
SIC Group:	262 Paper Mills		
2621	Paper mills		
SIC Group	: 267 Converted Paper/Pap	erboard Products	
2671 2672 2674 2676 2677 2679	Packaging paper and plass Coated and laminated pap Uncoated paper and multiv Sanitary paper products Envelopes Converted paper and paper	er vall bags	
SIC Group	։ 27 Other Misc. Printing/Pւ	ıblishing/Allied	
SIC Group	: 273 Misc. Printing [273, 2	74, 275]	
2732 2741 2752 2754 2759	Book printing Miscellaneous publishing Commercial printing, lithog Commercial printing, grave Commercial printing		

SIC Group	: 278 Blankbooks/Looseleaf Binders&Devices	
2782	Blankbooks and looseleaf binders	
010.0	070 Plate making 9 Poletod Continue	
SIC Group	279 Platemaking & Related Services	
2796	Platemaking services	<u></u>
SIC Group	o: 28 Other Chemicals & Allied Products	
SIC Group	o: 281 Industrial Inorganic Chemicals	
2812	Alkalies and chlorine	
2813 2819		
SIC Group	o: 282 Plastics Materials & Synthetic Rubber	
2821	Plastics materials and resins	
2822	Synthetic rubber	
2824	Organic fibers, noncellulosic	
SIC Group	o: 283 Drugs	
2833		
2834 2835	Pharmaceutical preparations Diagnostic substances	
SIC Group	b: 284 Soaps/Detergents/Perfumes&Cosmetics	
2841	Soap and other detergents	
2842		
2843 2844	Surface active agents Toilet preparations	
SIC Grou	p: 285 Paints, Varnishes & Lacquers	
2851	Paints and allied products	
SIC Grou	p: 286 Industrial Organic Chemicals	
2865 2869	Cyclic crudes and intermediates Industrial organic chemicals	

SIC Group:	287 Agricultural Chemicals	·
SIC Group:	289 Misc. Chemical Products	
•	2891 Adhesives & Sealants Adhesives and sealants	
•	2893 Printing Inks Printing ink	
•	2899 Chemicals & Chem. Preparations, n.e.c.	·
2992	29 Petrol. Refining&Related Industries Lubricating oils and greases Petroleum and coal products	
3021 3052	30 Misc.Rubber&Misc. Plastics Products Rubber and plastic footwear Rubber and plastic hose and belting Gaskets, packing and sealing devices	
3061	306 Fabricated Rubber Products, n.e.c. Mechanical rubber goods Fabricated rubber products	
3081 3084 3086 3088	308 Plastics Products, n.e.c. Unsupported plastics film and sheet Plastics pipe Plastics foam products Plastics plumbing fixtures Plastics products	
·	31 Leather & Leather Products Footwear cut stock Footwear, except rubber Leather goods	

SIC Group	: 311 Leather Tanning & Finishing
3111	Leather tanning and finishing
SIC Group	: 32 Stone, Clay, Glass&Concrete Products
3229 3264 3269 3275 3291	Pressed and blown glass and glassware Porcelain electrical supplies Pottery products Gypsum products Abrasive products
3295	Minerals, ground or treated
SIC Group	o: 33 Primary Metal
SIC Group	o: 331 Steel Works
3313 3316	Electrometallurgical products Cold finishing of steel shapes
SIC Group	o: 3315 Steel Wiredrawing/Nails and Spikes
3315	Steel wire and related products
SIC Group	o: 332 Iron & Steel Foundaries
3321 3324 3325	Gray and ductile iron foundries Steel investment foundries Steel foundries
SIC Group	o: 333 Prim/2nd.Smelting/Refining [333, 334]
3331 3339 3341	Primary copper Primary nonferrous metals Secondary nonferrous metals
SIC Group	o: 335 Screw Machine Products,Bolts&Nuts
3351 3354 3356 3357	Copper rolling and drawing Aluminum extruded products Nonferrous rolling and drawing Nonferrous wire drawing and insulating
SIC Group	p: 336 Nonferrous Foundaries
3363 3364 3366	Aluminum die-castings Nonferrous die-castings, except aluminum Copper foundries

SIC Group	: 336 Nonferrous Foundaries		
3369	Nonferrous foundries		
SIC Group	: 339 Misc. Primary Metal Products		
3398 3399	Metal heat treating Primary metal products		·
SIC Group	o: 34 Misc. Fabricated Metal Products		
3411	Metal cans		
3421	Cutlery		
3423 3425			
3425 3429			
3433			
3441	Fabricated structural metal		
3443	Fabricated plate work (boiler shops)		
3444	Sheet metal work Architectural metal work		
3446 3451	Screw machine products		
3452	Bolts, nuts, rivets and washers		
3462	Iron and steel forgings		
3469	Metal stampings		
3484 3489	Small arms Ordnance and accessories		
3491	Metal valves		
3494	Valves and pipe fittings		
3495	Wire springs		
3496	Miscellaneous fabricated wire products		
3497 3498	Metal foil and leaf Fabricated pipe and fittings		
3499	Fabricated metal products		
<u> </u>			
SIC Group	o: 347 Coatings, Engravings & Allied Services		
3471 3479	Plating and polishing Metal coating and allied services		
		· · · = · · · · · · ·	
SIC Groun	o: 35 Indust/Comm. Machinery&Comp. Equip.		
3511 3541	Turbines and turbine generator sets		
3544	Machine tools, metal cutting types Special dies, tools, jigs and fixtures		
3545	Machine tool accessories		
3554	Paper industries machinery		
3555	Printing trades machinery		
3556	Food products machinery		
3559 3561	Special industry machinery Pumps and pumping equipment		
3566	Speed changers, drives, and gears		

SIC Group	o: 35 Indust/Comm. Machinery&Comp. Equip.
3568 3569 3571 3572 3579 3589 3599	Office machines
SIC Groun	o: 36 Electronic & Other Electrical Equipment
3612 3621 3641 3643 3644 3645 3646 3661 3663 3669 3671 3675 3677 3678	Transformers, except electronic Motor and generators Electric lamps Current-carrying wiring devices Noncurrent-carrying wiring devices Residential lighting fixtures Commercial lighting fixtures Telephone and telegraph apparatus Radio and television communications equipment Communications equipment Electron tubes Electronic capacitors
3679 3692 3695 3699	Primary batteries, dry and wet Magnetic and optical recording media Electrical equipment and supplies
SIC Group	p: 3672 Printed Circuit Boards
3672	Printed circuit boards
SIC Grou	p: 3674 Semiconductors & Related Devices Semiconductors and related devices
SIC Grou	p: 37 Transportation Equipment
3714 3724 3728 3732 3761 3769 3795	Motor vehicle parts and accessories Aircraft engines and engine parts Aircraft parts and equipment Boat building and repairing Guided missiles and space vehicles Space vehicle parts and equipment Tanks and tank components

SIC Group	: 38 Measuring/Analyzing/Control Instrumnt	
3812 3821 3822 3823 3825 3826 3827 3829 3841 3842 3845 3851 3873	Search and navigational equipment Laboratory Apparatus and Furniture Environmental controls Process control instruments Instruments to measure electricity Analytical instruments Optical instruments and lenses Measuring and controlling devices Surgical and medical instruments Surgical appliances and supplies Electromedical equipment Ophthalmic goods Watches, clocks, watchcases, and parts	
SIC Group	o: 3861 Photographic Equipment & Supplies	
3861	Photographic equipment and supplies	
SIC Group	e: 39 Misc. Manufacturing	
3952 3991 3993 3995 3999	Lead pencils, art goods Brooms and brushes Signs and advertising displays Burial caskets Manufacturing industries	• • • • • • • • • • • • • • • • • • •
SIC Group	o: 391 Jeweiry, Silverware & Plated Ware	
3911 3914 3915	Jewelry, precious metal Silverware and plated ware Jewelers' materials and lapidary work	
SIC Group	o: 393 Musical Instruments	
3931	Musical instruments	
SIC Group	o: 394 Dolls/Toys/Games/Sport/&Athltc Goods	
3944 3949	Games, toys and children's vehicles Sporting and athletic goods	
SIC Grou	o: 396 Costume Jewel/Novelties/not PrecsMetals	
3961 3965	Costume jewelry Fasteners, buttons, needles, and pins	

SIC Group	o: 45 Transportation by Air
4512	Air transportation, scheduled
SIC Group	o: 47 Transportation Services
4789	Transportation Services
SIC Group	o: 49 Electrical, Gas & Sanitary Services
4925 4931	Gas production and/or distribution Electric and other services combined
4939	Combination utilities
4941 4952	Water supply Sewerage systems
4953	Refuse systems
4959 4961	Sanitary services Steam and air conditioning supply
SIC Group	o: 491 Electrical Services
4911	Electric services
SIC Grou	o: 50 Wholesale Trade - Durable Goods
SIC Group	o: 51 Wholesale Trade - Nondurable Goods
5169 5172	Chemicals and allied products Petroleum products
	Petroleum products
SIC Grou	p: 72 Personal Services
7211	Power Laundries, Family & Commercial
7213	Linen supply
7216 7218	Dry cleaning plants (except rug) Industrial launderers
SIC Grou	p: 73 Business Services
7389	Business services
SIC Grou	p: 75 Automotive Repair Services & Parking
7549	Automotive Services

7699	Repair services	· ···-	
SIC Grou	p: 80 Health Services		
8099	Health and allied services		

Production ratio/activity index Oty energy recovery off-site Oty energy recovery on-site Source reduction codes Oty recycled on-site Oty recycled off-site Oty treated off-site Oty treated on-site Oty released Chemical A Production ratio/activity Index Oty energy recovery off-site Oty energy recovery on-site Source reduction codes Oty recycled off-site Oty recycled on-site Oty treated off-site Oty treated on-site Oty released Chemical B Facility Oty energy recovery off-site Production ratio/activity index Oty energy recovery on-site Source reduction codes **Oty recycled off-site** Oty recycled on-site Oty treated off-site Oty treated on-site Oty released Chemical C

Figure D1-1, TRI Form R Data

Source: Tellus Institute, "Taking Stock: Measuring Toxics Use Reduction Progress in Massachusetts", March 1995

Agency

(IMPORTANT: , pe or print; read instructions before completing form)

Form Approved UMB Number: 2070-0093

OHILL LAND			
noroval	Entires:	11/92	

Page 1 of 9

FORM R TOXIC CHEMICAL RELEASE INVENTORY REPORTING FORM

Section 313 of the Emergency Planning and Community Right-to-Know Act of 1986, also known as Title III of the Superium Amendments and Reauthorization Act

TRI FACILITY ID NUM	6ER
	-
Toxic Chemical, Catego	ory, or Generic Name

WHERE TO SEND **COMPLETED FORMS:**

Environmental Protection

1. EPCRA Reporting Career P.O. Box 3348 Manifeld, VA 22115-3348 2. APPROPRIATE STATE OFFICE (See instructions in Appendix F)

ATTIK TOXIC CHEMICAL RELEASE INVENTORY

Enter "X" here if this is a revision

IMPORTANT: See instructions to determine when "Not Applicable (NA)" boxes should be checked. for EPA use only

	PA	KIL F	ACILITY	DENII	FICAI	ION	NFUR	IVIATIO	'IN .	
	ECTION 1. PORTING YEAR	SECT	Are you daim Yes (Ans	ADE SECTION ADE SECTION ADE SECTION ADECEMBER 1 ADECEM	chemical on 2.2;	identifie	on page	answer 2.2		
1.	9	2.2	If yes in 21, is	s this copy:		Sa	initized [Unsanit	ized	
SECT	TON 3. CEF	RTIFICATI	ON (Import	ant: Read	d and sig	yn afte	compi	eting all f	orm sect	tions.)
submit	by certify that I ted information able estimates u	is true and	complete and	that the a	mounts ar	nd value	e best of s in this	my knowle report are	dge and b accurate b	elief, the pased on
Name and	official title of owner/	perator or serio	rmanagement officia		·					
Signature						Di	ite Signed			
SECT	ION 4. FACI	LITY IDEN	TIFICATION							
	Facility or Establish	ment Name					TRI Facility	ID Number		
	Street Address						;;			
	City	•		•	County	e e				
4.1	State				Zip Code					
	Mailing Address (if o	liflerent from six	et acidress)			· · · · · · · · · · · · · · · · · · ·				
	City						PUT !	ABEL HER	E	
#	State	Ž	Zip Code		<u> </u>		· · · · · ·			

SEPAUnited States Environmental Protection

EPA FORM R

PART I. FACILITY IDENTIFICATION INFORMATION (CONTINUED)

TRI FACILITY ID NUMBER	
Toxic Chemical, Category, or Ge	neric Name

4.2	This report contains information for: (Important: check only one) a. An entire facility								Part of a	acility	
4.3	Technical Contact Name								Telephone Number (include area code		
4.4	Public Con		Name	· · · · · · · · · · · · · · · · · · ·				Telephone N	umber (include	area code)	
4.5	SIC Code (4-digit)	a.	b.	c.		d.		e.	1.		
4.6	Latitude and Longitude	Degrees	Latitude		Seconds		Pegrees	Longitud Minutes		Seconds	
4.7	Dun & Bra	dstreet N	umber(s) (9	digits)			a. b.				
4.8	EPA Identi	fication N	lumber(s) (R (1:	CRA I.E 2 chara			a. b.				
4.9	Facility NP	040000000000000000000000000000000000000	nit Number(s (9 characters)				a. b.				
4.10	Undergrou Number(s)		ion Well Code	e (UIC) (12 dig			a. b.				
SECT	ION 5. PARE	NT COM	PANY INFOR	MATION	J						
5.1	Name of Parent Cor										
5.1	NA Parent Company's I	Dun & Bradstree	et Number	· · · · · · · · · · · · · · · · · · ·							

⇔EPA

United States Environmental Protection Agency

EPA FORM R

PART II. CHEMICAL-SPECIFIC INFORMATION

	i age 3 or 9
TRI FACILITY ID NUMBER	
	=
Toxic Chemical, Category, or	Generic Name

SEC	TION 1. TOXIC CH	EMICAL IDENTITY		IOT complete this mplete Section 2 below.)
1.1	CAS Number (Important: E	nter only one number exactly as it appo	ears on the Section 313 list.	Enter category code if reporting a chemical category.)
1.2	Toxic Chemical or Chemical	Category Name (Important: Enter onl	y one name exactly as it ap	pears on the Section 313 list.)
1.3	Generic Chemical Name (Im	portant: Complete only if Part I, Sect	ion 2.1 is checked "yes." G	eneric Name must be structurally descriptive.)
SECT	TION 2. MIXTURE (COMPONENT IDENTITY		NOT complete this omplete Section 1 above.)
2.1	Generic Chemical Name Provi	ded by Supplier (Important: Maximum	of 70 characters, including	numbers, letters, spaces, and punctuation.)
SECT		S AND USES OF THE T	OXIC CHEMICA	L AT THE FACILITY
3.1	Manufacture the toxic chemical:	a. Produce b. Import		If produce or import: c. For on-site use/processing d. For sale/distribution e. As a byproduct f. As an impurity
3.2	Process the toxic chemical:	a. As a reactant	t tion component	c. As an article component d. Repackaging
3.3	Otherwise use the toxic chemical:	a. As a chemica	al processing aid	c. Ancillary or other use
SECTI		AMOUNT OF THE TOXI	C CHEMICAL O	N-SITE AT ANY TIME
4.1		wo-digit code from instru		

⊕EPA

United States Environmental Protection Agency

EPA FORM R

	· 490 + 01 5
TRI FACILITY ID NUMBER	
	-
Toxic Chemical, Category, or 0	Seneric Name

SECT	ION 5. RELEASES OF THE T	OXIC CH	A. Total Release (pounds/ year) (enter range code from instructions or estimate)	B. Basis of Estimate (enter code)	C. % From Stormwater
5.1	Fugitive or non-point air emissions	□NA			
5.2	Stack or point air emissions	□ NA			
5.3	Discharges to receiving streams or water bodies (enter one name per box)				
5.3.1	Stream or Water Body Nan	16			
5.3.2	Stream or Water Body Nam	ne			
5.3.3	Stream or Water Body Nan	ne			
5.4	Underground injections on-site	NA			
5.5	Releases to land on-site				
5.5.1	Landfill	NA			_
5.5.2	Land treatment/ application farming	NA			
5.5.3	Surface impoundment	NA			
5.5.4	Other disposal	NA			
E	Check here only if additiona	l Section	n 5.3 information is prov	ided on page 5	of this form.

⊕EPA

United States Environmental Protection Agency

EPA FORM R

PART II. CHEMICAL-SPECIFIC INFORMATION (CONTINUED)

me
IT

5.3	Discharges to receiving streams or water bodies (enter one name per box)	A. Total Release (pounds/ year) (enter range code from instructions or estimate)	B. Basis of Estimate (enter code)	C. % From Stormwater
5.3	Stream or Water Body Name			
5.3	Stream or Water Body Name			
5.3	Stream or Water Body Name			
SECTIO	ON 6. TRANSFERS OF THE TOXIC C	CHEMICAL IN WASTES TO	O OFF-SITE LOC	CATIONS
	6.1 DISCHARGES TO PUBLICLY	Y OWNED TREATMENT V	VORKS (POTW)	
.1.A 7	Total Quantity Transferred to POTWs	and Basis of Estimate		-
1.A.1	Fotal Transfers (pounds/year) (enter range code or estimate)	6.1.A.2 Basis of Estimate (enter code)	ate	
1.A.1	Fotal Transfers (pounds/year)	6.1.A.2 Basis of Estima	ate	
.1. A .1	Fotal Transfers (pounds/year)	6.1.A.2 Basis of Estima (enter code)	ate	
.1.A.1	Fotal Transfers (pounds/year) (enter range code or estimate)	6.1.A.2 Basis of Estima (enter code)	ate	
.1.A.1	Fotal Transfers (pounds/year) (enter range code or estimate) POTW Name and Location Information POTW Name	6.1.A.2 Basis of Estimate (enter code)	ate	
.1.A.1 .1.B F	Fotal Transfers (pounds/year) (enter range code or estimate) POTW Name and Location Information POTW Name	6.1.A.2 Basis of Estima (enter code) on 6.1.BPOTW Name	County	

(example: 1, 2, 3, etc.)

D2-5

⇔EPA

EPA FORM R

United States Environmental Protection Agency

TRI FACILITY ID NUMBER	1 age 0 0	_
Toxic Chemical, Category,	or Generic Name	

SECTION 6.2 TR	ANSEEDS TO O	MED OFF	SITE LOCATIONS				
Off-site EPA Identifi	ication Number (RCRAID N		SITE EUCATIONS	····			
6.2.				<u> </u>			
Off-Site Location Name							
Street Address							
City				County			
State	Zip Code		Is location under contro facility or parent compa		ing	Yes	No
A. Total Transfers (pounds/yea (enter range code or estimate		Basis of Estimate enter code)		C. T	ype of Waste ecycling/Energ	Treatment/Dispo y Recovery (ente	sal/ er code)
1.	1.		· · · · · · · · · · · · · · · · · · ·	1.	M		· · · · · · · · · · · · · · · · · · ·
2.	2.			2.	M		
3.	3.			3.	M		
4.	4.			4.	M	. ·	
SECTION 6.2 TR	ANSFERS TO OT	HER OFF-	SITE LOCATIONS			· .	
	cation Number (RCRA ID No					······································	:
Off-Site Location Name	<u> </u>			· · · · · · · · · · · · · · · · · · ·			
Street Address		<u> </u>					
City				County			
State	Zip Code		Is location under contro facility or parent compa		ing	Yes	No
A. Total Transfers (pounds/yea (enter range code or estimat		Basis of Estimate (anter code)		C. T	ype of Waste 1 ecycling/Energ	Freatment/Disport by Recovery (ent	sal/ er code)
1.	1.			1.	M		
2.	2.			2.	M		
3.	3.			3	M	·	
4.	4.	· .	· · · · · · · · · · · · · · · · · · ·	4.	M		

			art II,								
box			whic							2, 3,	

EPA FORM R

Chited States
Environmental Protection Agency

	, age , c
TRI FACILITY ID NUMBER	
Toxic Chemical, Category, or	Calabara Nama

				site waste treatme ning the toxic cher		
eneral laste Stream nter code)		b. Waste Treatmer [enter 3-characte	at Method(s) Sequence er code(s)]	c. Range of Influent Concentration	d . Waste Treatment Efficiency Estimate	e. Based on Operating Data?
A.1a	7A.1b	1	2	7A.1c	7A.1d	7A.1e
	3	4	5		%	Yes No
	6	7	8		70	
A.2a	7A.2b	1	2	7A.2c	7A.2d	7A.2e
	3	4	5		0/	Yes No
	6	7	8		%	
A.3a	7A.3b	1	2	7A.3c	7A.3d	7A.3e
	3	4	5		0/	Yes No
	6	7	8		%	
4.4a	7A.4b	1	2	7A.4c	7A.4d	7A.4e
	3	4	5			Yes No
	6	7	8		%	
A.5a	7A.5b	1	2	7A.5c	7A.5d	7A.5e
	3	4	5			Yes No
	6	7	8		%	

EPA FORM R

CPEPA
United States
Environmental Protection
Agency

TRI FACILITY ID NUMBER	
Toxic Chemical, Category, or	r Generic Name

Not Applicable (NA) -	Check here if <u>no</u> on-site energy recovery is apparted to the stream containing the toxic chemical or	
nergy Recovery Methods [enter 3-characte	r code(s)]	
1	2 3 4	
· · · · · · · · · · · · · · · · · · ·		· ·
SECTION 7C. ON-SITE RE	CYCLING PROCESSES	
	CYCLING PROCESSES Check here if <u>no</u> on-site recycling is applied to stream containing the toxic chemical or chemic	any waste
Not Applicable (NA) -	Check here if <u>no</u> on-site recycling is applied to stream containing the toxic chemical or chemic	any waste cal category.
Not Applicable (NA) -	Check here if <u>no</u> on-site recycling is applied to stream containing the toxic chemical or chemic	any waste cal category.
Not Applicable (NA) -	Check here if <u>no</u> on-site recycling is applied to stream containing the toxic chemical or chemic	cal category.
Not Applicable (NA) -	Check here if <u>no</u> on-site recycling is applied to stream containing the toxic chemical or chemical	cal category.

EPA FORM R

United States
Environmental Protection
Agency

TRI FACILITY ID NUMB	ER
Chemical, Category, or C	Senenc Name

using	vantity estimates can be reported up to two significant figures.	Column A 1992 (pounds/year)	Column B 1993 (pounds/year)	Columi 1994 (pounds/ye		Column D 1995 (pounds/year)	
8.1	Quantity released *						
8.2	Quantity used for energy recovery on-site						
8.3	Quantity used for energy recovery off-site				·		
8.4	Quantity recycled on-site						
8.5	Quantity recycled off-site						
8.6	Quantity treated on-site						
8.7	Quantity treated off-site						
8 .8	Quantity released to the environment as a result of remedial actions, catastrophic events, or one-time events not associated with production processes (pounds/year)						
	not associated with producti	dir prosesses			· · · · · · · · · · · · · · · · · · ·		
3.9	Production ratio or activity is		(#02::)				
8.9 3.10	-	ndex n any source re	eduction activiti	es for this	s chemi er Sectî	cal during on 8.11.	
	Production ratio or activity in Did your facility engage is	ndex n any source re t, enter "NA" in	eduction activiti	and answ	er Secti	on 8.11.	
	Production ratio or activity in Did your facility engage in the reporting year? If no Source Reduction Activities [enter code(s)]	ndex n any source re t, enter "NA" in	eduction activiti Section 8.10.1	and answ	er Secti	on 8.11.	
3.10	Did your facility engage in the reporting year? If no Source Reduction Activities [enter code(s)]	ndex n any source re L enter "NA" in Me	eduction activiti Section 8.10.1 thods to identify A	and answ	er Sectî er codes)	on 8.11.	
3.10	Did your facility engage in the reporting year? If no Source Reduction Activities [enter code(s)]	ndex n any source re L enter "NA" in Ma	eduction activities Section 8.10.1. thods to identify A	and answ	er Secti er codes) c.	on 8.11.	

^{*} Report releases pursuant to EPCRA Section 329(8) including "any spilling, leaking, pumping, pouring, emitting, emptying, discharging, injecting, escaping, leaching, dumping, or disposing into the environment." Do not include any quantity treated on-site or off-site.

8.9 Production Ratio or Activity Index

For Section 8.9, you must provide a ratio of reporting year production to prior year production, or provide an "activity index" based on a variable other than production that is the primary influence on the quantity of the reported toxic chemical recycled, used for energy recovery, treated, or disposed. The ratio or index must be reported to the nearest tenths or hundredths place (e.g., one or two digits to the right of the decimal point). If the manufacture or use of the reported toxic chemical began during the current reporting year, enter not applicable, "NA," as the production ratio or activity index.

It is important to realize that if your facility reports more than one reported toxic chemical, the production ratio or activity index may vary for different chemicals. For facilities that manufacture reported toxic chemicals, the quantities of the toxic chemical(s) produced in the current and prior years provide a good basis for the ratio because that is the primary business activity associated with the reported toxic chemical(s). In most cases, the production ratio or activity index must be based on some variable of production or activity rather than on toxic chemical or material usage. Indices based on toxic chemical or material usage may reflect the effect of source reduction activities rather than changes in business activity. Toxic chemical or material usage is therefore not a basis to be used for the production ratio or activity index where the toxic chemical is "otherwise-used" (i.e., non-incorporative activities such as extraction solvents, metal degreasers, etc.).

Example 14: Determining a Production Ratio

Your facility's only use of toluene is as a paint carrier for a painting operation. You painted 12,000 refrigerators in the current reporting year and 10,000 refrigerators during the preceding year. The production ratio for toluene in this case is 1.2 (12,000/10,000) because the number of refrigerators produced is the primary factor determining the quantity of toluene to be reported in Sections 8.1 through 8.7.

A facility manufactures inorganic pigments, including titanium dioxide. Hydrochloric acid is produced as a waste byproduct during the production process. An appropriate production ratio for hydrochloric acid is the annual titanium dioxide production, not the amount of byproduct generated. If the facility produced 20,000 pounds of titanium dioxide during the reporting year and 26,000 pounds in the preceding year, the production ratio would be 0.77 (20,000/ 26,000).

While several methods are available to the facility for determining this data element, the production ratio or activity index must be based on the variable that most directly affects the quantities of the toxic chemical recycled, used for energy recovery, treated, or disposed. Examples of methods available include:

- (1) Amount of toxic chemical manufactured in 1993 divided by the amount of toxic chemical manufactured in 1992; or
- Amount of product produced in 1993 divided by the amount of product produced in 1992.

J. Fr. San

EXECUTIVE SUMMARY

In February 1991, the Massachusetts Department of Environmental Protection (DEP) submitted a project proposal to the Civil Engineering Department at Tufts University. The objectives of the project were to 1) identify and evaluate the sources of information regarding industrial toxics use and waste generation within the Commonwealth, 2) identify and evaluate available measurement methodologies for tracking progress in toxics use and waste reduction, and 3) recommend a method or methods that DEP can use to meet its needs. The project was accepted by Tufts for inclusion in the 1991 Capstone Masters Degree Program.

In 1989, Massachusetts enacted the Toxics Use Reduction Act (TURA). Adoption of the Act reflected the shift in focus from environmental legislation that had primarily relied on "end-of-pipe " regulations to control toxics and manage wastes to an approach which reduces toxics at the source.

The goal of TURA is "to achieve, by 1997, a fifty percent (50%) reduction from the 1987 quantities of toxic and hazardous byproducts generated by industry in the commonwealth of Massachusetts" (MGL c. 21I, Toxics Use Reduction Act). Under the Act, DEP is charged with evaluating annual progress towards TURA's 50% reduction goal. To meet this responsibility, DEP requires a measurement methodology that can quantify toxic byproduct reductions on a state-wide level. As of yet, there is no single agreed upon method that will provide this information.

Data Evaluation

The paper provides a general evaluation of the utility of three data sets in measuring toxics use reduction on a state-wide basis. The general evaluation was based on a review of the reporting requirements associated with the following data sets:

- Monitoring Data
- Toxics Release Inventory (TRI) Data (under current and proposed programs)
- Toxics Use Report Data

The general evaluation involved the application of three criteria that pertain to; a) the data's a allability in compiling a complete and consistent database, b) the data's applicability in measuring toxics use reduction, and c) the data's reliability in reflecting actual quantities.

The general evaluation resulted in the identification of the strengths and limitations relative to the utility of the data sets. The major limitation in using the monitoring data and current TRI data to measure toxics use reduction is associated with the

applicability of the data. These data sets primarily include emissions, measured after treatment and recycling, rather than byproduct data, measured prior to treatment and recycling. Therefore, they have limited utility in measuring reduction in byproduct quantities.

A limitation identified in utilizing the TURA data to measure reductions stems from the need to adjust or "normalize" the data to account for changes in production rate. This limitation is addressed in this paper by recommending a methodology that can be used to obtain the normalized data. Other limitations identified for the TRI and TURA data sets are associated with the data's availability and reliability.

Facility-specific data were evaluated to support the conclusions of the general evaluations relative to the utility of the data sets. These data were compiled from DEP files on thirteen selected facilities. These facilities, which consist of metal intensive industries located in the central Massachusetts area, were selected because they had been previously studied by the DEP and were therefore well documented.

The evaluation of the facility-specific data, which includes TRI Form R and TURA Form S data, verifies the conclusions of the general evaluation of the data sets. The evaluation of the facility-specific data demonstrates a major limitation in the utility of the TRI data in measuring toxics use reduction. This limitation exists because the data reflect emission rather than byproduct quantities.

The facility-specific data evaluation also included telephone interviews with personnel of the selected facilities. Information obtained from the interviews provided insight into the methods and assumptions used in determining the reported data. The information indicated significant variation in the methods used by the facilities. This variation affects the reliability of the compiled data sets in reflecting actual quantities and consequently will affect the utility of the data in measuring toxics use reduction.

Measurement Methods

Available measurement methods were evaluated to determine their appropriateness in measuring progress in toxics use reduction. Evaluation criteria included information requirements, quantities to be measured, accuracy in reflecting toxics use reduction, versatility, and whether results could be meaningfully aggregated at the state-wide level.

The following general approaches to measuring progress were evaluated:

- Actual Quantity
- Production Normalized
- Throughput
- · Economic
- Technological
- Degree of Hazard

The evaluation concluded that actual quantity and production normalized best satisfied the criteria for measuring progress in toxics use reduction under TURA. While degree of hazard is an important consideration in measuring progress, lack of an existing comprehensive classification system, as well as the information necessary in order to implement such a system, prohibits its use by DEP at this time.

Two approaches to measuring production normalized progress at the state-wide level were considered. The first utilizes normalized data reported at the production unit level, and aggregates that data to the state-wide level. The second approach aggregates actual quantities to the state-wide level, and then normalizes based on a state-wide indicator of production activity. Available public-sector data was evaluated to determine the best indicator of state-wide production activity.

Measuring State-Wide Progress

Application of measurement techniques to available data produced the following methods which provide the most accurate measure of state-wide progress:

- Objective No. 1: Reduce total toxics use in the Commonwealth of Massachusetts
- Recommended Method A: Sum facility-level actual byproduct quantities to state-wide total. Calculate percent reduction in total quantity of byproduct.
- Objective No. 2: Reduce toxics use after adjustment for production activity
- Recommended Method B: Sum actual quantities as in Method A.

 Normalize total using state-wide indicator of production
 activity. (Annually use employment data, or value-added
 manufacture for years 1992 and 1997)
- Recommended Method C: Calculate a facility-wide, and then state-wide reductions using either actual quantity reduction or a weighted average of Byproduct Reduction Indices. Weighting to be based on the amount of byproduct that would have been produced in the measuring year, if no toxics use reduction had taken place.

Method C represents the most accurate representation of state-wide progress in toxics use reduction, however, it requires information which is not currently reported under TURA. It is recommended that the following additional information be required for each chemical on TURA Form S, in order to utilize method C:

• Facility-wide Byproduct Reduction Index

 Total Expected Quantity of Byproduct (quantity of byproduct that would have been produced in reporting year if no toxics use reduction had taken place since base year, based on production ratios)

The recommended methods do not represent calculation of absolute, accurate measurement of state-wide toxics use reduction. In aggregating normalized data, inaccuracies are introduced due to dissimilarities in chemicals, uses of chemicals, and units of product, as well as other confounding factors such as varying chemical and facility coverage over time.

The most meaningful results will be obtained by using multiple indicators of progress as outlined above. This will both address TURA's dual objectives, and incorporate techniques which handle inaccuracies and confounding factors differently. This will allow a range of toxics use reduction to be defined.

While the errors in data and methods will distort results, it is unlikely that they will obscure progress. A thorough testing of the recommended methods using actual data will be required in order to estimate the true error involved, and to determine if the methods produce results which are sufficiently accurate for DEP's purposes.

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 Utility and Quality of the Data

Section 4 presented a general evaluation of the utility of data sets in assessing the progress in toxics use reduction on a state-wide basis. Assessment of progress is to be accomplished by tracking the reduction in the quantity of byproduct generated per unit of product. In accordance with the criteria applied in the general evaluation, the data set must represent a complete and consistent database and must reliably reflect the quantities of byproduct rather than emissions.

The general evaluation identified that the major limitation associated with the utility of monitoring data and current TRI data in measuring toxics use reduction is due to the fact that these data primarily reflect quantities of emissions. These quantities are determined following any treatment or recycling of the wastestream. Monitoring data and TRI data provided for untreated wastestreams do reflect byproduct quantities. These data could possibly be used to verify or supplement TURA data, but alone are not sufficient to assess overall progress. In addition, the diversity of the reporting requirements prevents the aggregation of monitoring data across various wastestreams. Such aggregation is necessary in compiling a complete and consistent database.

The amendments to Form R under the federal Pollution Prevention Act and the TURA Form S will generate data on the quantity of byproducts. Data from the amended Form R will be available in 1992. The major limitation associated with the utility of the TURA data in measuring toxics use reduction occurs because the facility-wide byproduct data are not normalized to account for variations in production rate; only production unit data are normalized. The amended Form R will provide facility level production normalized data. However, draft instructions do not require calculation of production activity at the production unit level, and, in fact,

allow facilities enormous flexibility in choosing the basis for normalization. As the draft form and instructions stand, it is doubtful whether a meaningful measure of production activity will be obtained.

Another limitation identified for both the TRI and TURA data pertains to the reliability of the data. The reliability of these data is a function of their accuracy, which will vary significantly depending on the methods and assumptions used in determining the reported quantities. As documented in Section 5, the quality of TURA 1990 data is questionable.

To improve the accuracy of the data, federal and state regulators should develop guidelines for recommended measurement/estimation methods to be used for wastestreams associated with standard processes and categorical emissions. Facilities should also be assisted in establishing adequate systems for tracking materials as part of a materials accounting program. Such a program is essential to determining accurate byproduct quantities.

Both general and specific evaluations of TURA and TRI data unveiled important limitations regarding their utility in measuring progress:

- 1987 base year not possible
- facilities dropping below threshold
- chemical list and facility coverage issues

Further investigation is necessary in order to determine the magnitude of error which will be introduced by these limitations.

7.2 Measuring State-wide Progress

There is no single ideal method for measuring progress in toxics use reduction. The degree to which each method satisfies the criteria of accuracy, information requirements, versatility, and

ability to be aggregated, depends on the level at which progress is measured, as well as the program objectives. The primary focus of this project was to determine a methodology with which to measure progress in the reduction of byproduct generation, via toxics use reduction, at the state-wide level.

Our recommendation for measuring progress at the state-wide level is to use multiple indicators of progress to address TURA's dual objectives, and to utilize all appropriate sources of information. Recommended Methods A and B utilize existing information available to DEP. Method C requires additional information as noted.

Objective No. 1: To reduce total toxics use in the Commonwealth of Massachusetts.

Recommended Method A: Actual Quantity

Aggregate total byproduct quantities, as provided at the facility level on TURA Form S, and compute a percent reduction in total quantity of byproduct.

Objective No. 2: To reduce toxics use after adjustment for changes in production activity.

Recommended Method B: Production Normalized at State level

Aggregate total byproduct quantities, as provided at the facility level on TURA Form S. Normalize using a state-wide indicator of production activity; then compute percent normalized reduction. Use the following as a proxy for state-wide production:

Annually: Manufacturing employment data, adjusted for changes in manufacturing productivity (measured at the national level, until results regarding state trends are obtained).

For years 1992, 1997: Value-added by manufacture

Recommended Method C: Production Normalized at Production Unit Level

Two alternate methods of calculation:

Actual Quantity Application:
Calculates the actual quantity of byproduct reduction,
after adjustment for production activity, for individual
production units, and then sums these totals to calculate
facility-wide actual quantity and percentage byproduct
reductions. State-wide reductions can then be calculated
in a similar fashion using facility-wide totals.

Weighted Average Application:
Calculate a facility-wide weighted average of byproduct reduction indices (BRI's) for each chemical. Weighting to be based on the amount of byproduct that would have been produced in the measuring year, if no toxics use reduction had been implemented since the base year. A state-wide weighted average can then be calculated from facility BRI's in a similar fashion.

The first two methods, A and B, involve only the summing of total byproduct quantities from Form S and nominal calculations associated with state-wide production indicators. Production normalized results computed in this manner may have significant sources of error. For example:

- Employment patterns may not parallel production patterns
- National productivity trends may not parallel state trends
- Based on total quantity data, therefore facilities falling below threshold will be counted as having eliminated byproduct generation. If significant number of facilities fall below threshold due to toxics use reduction, result will be overstatement of state-wide progress.

Methods A and B are based on utilization of the information currently reported on TURA Form S. A production normalized method based on the individual BRI's (Method C), rather than on state-wide indicators, would result in a more accurate measure of progress; however, this requires information not currently reported.

BRI's are currently required on Form S at the production unit level, while total byproduct quantities are required for the facility as a whole. There is no means of determining what portion of the total can be attributed to each production unit. Because industry may regard quantity/production unit as confidential information, they have objected to reporting it.

Therefore, our recommendation is that facilities be required to calculate facility-wide production normalized reductions and to report these results on Form S. In addition, the facility-wide 'expected quantity' (assuming no source reduction) must be reported. This method does not involve collection of any additional data by facilities, only further manipulation of the quantities already used to calculate BRI's.

It should be noted that these methods do not represent calculation of an absolute, accurate measure of state-wide progress in toxics use reduction. In aggregating normalized data, inaccuracies are introduced due to the dissimilarities in chemicals, uses of chemicals, and units of product. In addition, there are a number of factors which will affect the result, and may obscure true toxics use reduction efforts. Each measurement method handles these confounding factors differently. For example, facilities falling below threshold will cause overstatement of progress in one method and understatement in another. In some cases, inconsistencies may cancel out.

While the majority of research literature has concluded that meaningful results cannot be obtained by aggregating normalized data, it would seem reasonable to identify the most meaningful methodologies, and then determine their adequacy.

As a result of this examination of the data and methods available, the most meaningful results will be obtained by utilizing multiple indicators of progress, as shown above. If the additional data can be obtained, the facility-wide production normalized Method C will

likely provide the most meaningful indicator of progress. Utilizing multiple indicators will both address TURA's dual objectives, and incorporate techniques which handle confounding factors differently, thereby allowing a range of toxics use reduction progress to be defined.

While the errors in data and methods will certainly distort results, it is unlikely that they will obscure progress. A thorough testing of the recommended methods using actual data will be required in order to estimate the true error involved, and to determine if the methods produce results which are sufficiently accurate for DEP's purposes.

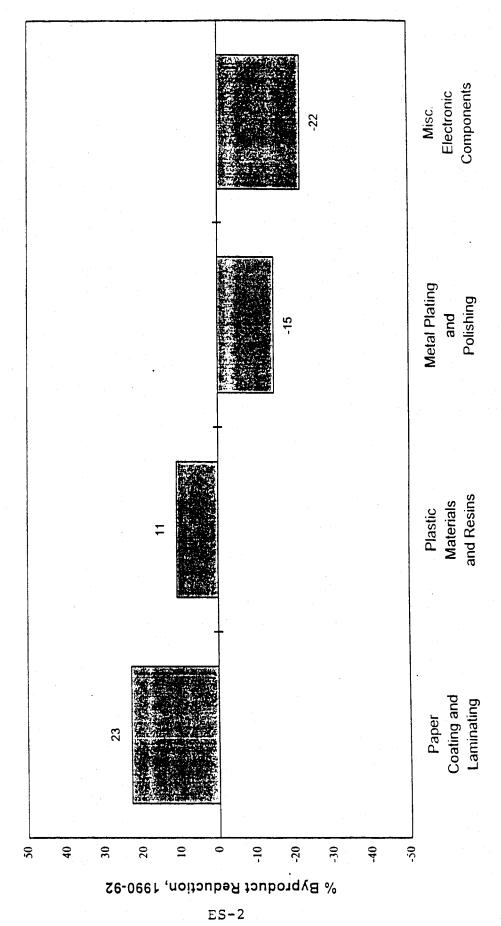
7.3 Further Study

As a result of this investigation, the following areas are recommended for further study:

- The effect of small quantity users on state-wide reduction.
 If patterns of toxics use reduction parallel those of large quantity users, there will be no error introduced by disregarding small quantity users.
- Effects due to the expanding chemical list and increased SIC code coverage. A determination must be made on how or whether to include these in measurement of progress. If they are to be included, methods for handling additional coverage with different base years must be developed. State-wide indicators for non-manufacturing SIC codes must be investigated.
- Changing productivity trends in Massachusetts. An analysis
 must be undertaken to determine whether changes in
 productivity trends in Massachusetts mirror those of the
 nation. If they do not, can they be reliably estimated?

- Research relevance of value-added by manufacture as a proxy for state-wide production activity.
- Sensitivity analysis of confounding factors and other sources of error in recommended methods.
- Effects due to facilities dropping below threshold as a result of toxics use reduction. Investigate feasibility and benefits of requiring all facilities which have ever filed a TURA Form S, to file in 1997.
- Pilot study of additional reporting requirements for recommended production normalized measurement method. An industry survey of a modified Form S would provide valuable information regarding the ability and willingness of industry to furnish additional data.
- Tests of recommended methods using actual data. This may be done after 1990 and 1991 data have been compiled (late 1992 or 1993).

EXECUTIVE SUMMARY


Five years ago the Massachusetts Legislature passed the Toxics Use Reduction Act (TURA), promoting toxics use reduction (TUR) as an effective pollution prevention method for improving worker and environmental health and safety. The Act set a goal of reducing toxic waste generation, by 50% by 1997, using TUR to meet this goal.

Five years after is passage, are Massachusetts industries making progress towards this goal? Measuring progress presents several challenges -- are qualitative or quantitative indicators preferable? While qualitative measures (e.g., percentage of facilities with P2 plans) generally require less detailed data than quantitative indicators, quantitative data can provide concrete and comparable evaluation of TUR trends (for example, changes in a facility's toxic byproducts from year to year). One of the greatest challenges in assessing TUR progress is how to distinguish progress due to explicit prevention efforts from other, unrelated factors such as changes in a company's product mix or changes in production levels.

Because methods for measuring TUR progress are in the nascent stage, this study develops and applies a methodology to five industry sectors (as identified by SIC codes). Tellus's methodology uses a combination of qualitative and quantitative measures from data filed annually by Massachusetts facilities (required under TURA) as well as data available from the Toxics Release Inventory (TRI). Qualitative data including TUR technique codes and source reduction activity codes (describing the types of TUR techniques and source reduction implemented at a facility) provide insight to the TUR activity level within a facility and an SIC group. However, quantitative data provide a more concrete evaluation of TUR progress.

Tellus' initial assessment of TUR progress by four industrial sectors suggests limited and mixed progress to date as shown in Figure ES-1. This figure shows the percent reduction in byproduct generation by facilities within each SIC code between the years 1990 and 1992 (1993 data are not yet available). A positive number indicates decreases in byproduct generation during this time period while a negative number indicates increases in byproduct generation. Facilities that coat and laminate paper (SIC 2672) and plastic materials and resins manufacturers (SIC 2821) have decreased their generation of toxic byproducts over the two year period. Metal plating and polishing operations (SIC 3471) increased byproducts by 15% and miscellaneous electronic component manufacturers (SIC 3679) increased byproducts by 22%. Due to probable data reporting errors, it is impossible to assess progress for miscellaneous plastic products manufacturers (SIC 3089).

This study examines normalized measures of TUR using the number of employees in an industry sector as an indicator of the sector's product output. If product output is correlated with chemical use and byproduct production, then changes in employment (as a proxy for output) may explain changes in chemical quantities. For example, if employment in an industry sector is declining, and chemical use is also declining, then a decline in business, rather than TUR, may be the root cause of declining chemical use. Conversely, if an industry

Industry Type

E2-2

sector is growing (as evidenced by increasing employment), but its chemical use is declining, TUR progress is suggested. Since only five industry categories were assessed in this study, further application of our normalization techniques are necessary before definitive conclusions are possible.

Since 1990 (the first year Massachusetts industries began filing TURA data), the number of SIC codes and chemicals reportable under TURA have expanded. This expanding list of reportable chemicals and facilities may potentially mask TUR progress. At the SIC code level, this study concludes that quantitative analyses should be limited to those chemicals reportable in 1990. For example, for SIC 2821, byproduct generation appears to increase by 9% between 1990 and 1992 when all reportable chemicals are considered. When the analysis is limited to 1990 reportable chemicals, byproducts decrease by an 11%. Once the list of reportable chemicals becomes constant, it will be possible to begin measuring progress with the larger list. Similarly, when measuring progress at the state level, it is important to hold the SIC codes and chemicals constant.

Our study relies on three years of TURA data and two years of TRI data. Assessing trends over such as short time period is naturally difficult -- short term fluctuations may conceal longer term trends visible only with more time-series data. Measuring progress is an ongoing activity that should be repeated yearly. As the database becomes more stable once all reportable chemicals are phased in, the methodology developed in this study will be increasingly useful for taking stock of TUR progress in Massachusetts.

Appendix F - EXAMPLES OF TURA DATA STRUCTURE ISSUES

1 Introduction

A number of problems with using the TURA data for measuring progress are due to the way the TURA legislation mandated that the data be collected and with some of the resulting reporting procedures. The legislation mandates the format in which the data be collected. The format includes collecting data at three different levels. Some information is collected at the chemical level, some is collected at the individual production unit level, and some is collected at the level of the specific chemical use in individual production units. (See Appendices A and D for samples of the forms used to collect the data.)

This Appendix describes how the data is structured and provides examples of what a facility's information might look like. The purpose of this Appendix is to describe in detail how the data is reported and stored in the FMF system. It also explains how the resulting data structure hinders measuring progress in TUR at the industry or state-wide level. The rest of this section describes the data structure. The following sections provide specific examples.

Chemical Level - At the chemical level, a facility reports the total amount of chemical used in the entire facility in three categories: manufactured, processed, and otherwise used. A facility also reports the total amount of byproduct generated and the amount shipped in or as product.

Production Unit Level - For each production unit in which any listed chemicals are used, the facility reports on the product made in the unit, the production process used to make the product, and the industry SIC codes that best describe the product. Facilities may report more than one SIC code but the first one listed is supposed to be the primary SIC code for the production unit.

Chemical-Production Unit Level - For every chemical and each production unit in which it is used, the facility reports a code for the amount of the chemical used in the production unit expressed as a range, a measure of the amount by which byproducts (BRI) and emissions (ERI) have changed for that chemical in that production unit, a base year from which the BRI and ERI are calculated, and, if the BRI shows a 5 percent or more improvement over the prior year's BRI, codes are reported that indicate what TUR techniques were used to achieve that progress.

Figure F-1 illustrates how this structure is reflected in the data reported by a hypothetical facility. At the chemical level, in 1990, the facility 'otherwise used' a total of 100,000 lbs of toluene and generated 100,000 lbs of toluene byproduct. No toluene was manufactured,

¹The range codes are: A = 0 to 5,000 lbs; B = > 5,000 lbs to 10,000 lbs; and C = > 10,000 lbs.

F-2

1990 Data

Chemical Record			
Facility: XYZ Finishing Inc.		Chemical: Toluene	
Manufactured	0	0 Gen. Byproduct	100,000
Processed	0	Shipped in Product	0
Otherwise Used	100,000		

Production Unit Record

Facility: XYZ Finishing Inc.	hing Inc.		
Production Unit	1	2	3
Product	Fuses	Metal Parts	Ball Bearings
Process	Fuse Manufact.	Degreasing	Bearing Manufact.
SIC Codes	3643,3629	3469	3499

Chemical - Production Unit Record

	Chemical: Toluene	3	06	၁	N/A	N/A .	
II NCCOIG	·	1	87	၁	N/A	N/A	
Chemical - Production Unit Accord	Facility: XYZ Finishing Inc.	Production Unit:	Base Year	Quantity Code	BRI	ERI	TUR Codes

Chemical Record

1991 Data

Manufactured 0 Gen. Byproduct 150,000 Processed 0 Shipped in Product 0 Otherwise Used 150,000 150,000 0	Facility: XYZ Finishing Inc.		Chemical: Toluene	
150,000	Manufactured	0	Gen. Byproduct	150,000
	Processed	0	Shipped in Product	0
	Otherwise Used	150,000		

Production Unit Record

Facility: XYZ Finishing Inc.	hing Inc.		
Production Unit	1	2	3
Product	Fuses	Metal Parts	Ball Bearings
Process	Fuse Manufact.	Degreasing	Bearing Manufact.
SIC Codes	3643,3629	3469	3499

Chemical - Production Unit Record

Chemical: Toluene	3	06	С	%05	20%	51,81
c.	1	87	၁	-11%	-11%	
Facility: XYZ Finishing Inc.	Production Unit:	Base Year	Quantity Code	BRI	ERI	TUR Codes

Figure F-1

processed or shipped in the product of this facility. The following year, use and byproduct increased to 150,000 lbs.

At the production unit level, the facility has a diverse business and has chosen to divide the facility, for reporting purposes, into three different production units. One production unit makes fuses, another makes metal ball bearings and one is a metal parts degreaser. Production unit 1 has two industry codes. SIC code 3643 is listed first since it is the primary industry for the production unit. The other two production units each only have one SIC code, both different from that of production unit 1.

At the chemical-production unit level, the toluene is used in only two of the production units, 1 and 3. The BRI for Unit 1 is calculated from a base year of 1987 while the BRI for Unit 3 is calculated from 1990. The BRIs show that, in 1991, more byproduct was generated per unit of product in unit 1 and less byproduct was generated per unit of product in unit 3.² The use codes, C, indicate that the toluene was used in quantities above 10,000 lbs in both production units. There is no way to tell from the chemical-production level information how the use is split. It could be split fairly evenly between the two units or one unit could account for the majority of the use.

2 Specific Examples of Data Structure Issues

2.1 Using BRI to Measure TUR Progress

The structure of the TURA data does not allow the BRIs or TUR codes to be used to measure progress in most cases. This is because there is no indication of how the BRI or TUR code related to the chemical quantity and therefore no way to tell whether a particular BRI or TUR code is responsible for a significant change in quantity.

The TURA data in Figure F-1 provide an example of this issue. Because the Quantity Code is "C" for both production units, it is possible that Production Unit 1, with a BRI of -11%, is responsible for either 135,000 lb or 15,000 lb out of the total 150,000 lb of toluene use. Therefore, a facility-wide weighted average BRI could be as low as -5% or as high as +44%.

As described in the body of report, when a chemical is used in more than one production unit, the BRIs can not be used to measure progress. However, when a chemical is used in only one production unit, it is, in effect, the facility-wide BRI for the chemical. Chemical-production units which fall into this category are used in Universe 2 to measure state-wide progress with BRIs. (See Chapter 8 and Appendix I for more detailed explanation on Universe 2.)

² A positive BRI is 'good', it shows increasing effectiveness while, a negative BRI is 'bad", it shows that the chemical is being used less effectively, i.e. more is being wasted.

2.2 Using Production Unit SICs to Measure Industry Progress

The TURA data structure also makes it difficult in many cases to measure progress for specific industries. TURA facilities report one or several SIC codes at the production unit level. This provides a precise information about the types of production units used in various industrial sectors. However, because the chemical quantities are reported for the entire facility, the quantities can not be attributed accurately to specific industries.

In the example given in Figure F-1, the facility use 100,000 pounds of toluene in 1990. The use is split between two different production units with three different SIC codes, 3643, 3629, and 3499. The primary SIC codes are 3643 and 3499. Because the Quantity Code for both production units is C, there is no way to tell how to apportion the use between the industries. If the full amount of use is included in an analysis by 4-digit SIC code, then 100,000 lb of toluene is added to totals for both SIC 3643 and 3499. This results in "double counting" of the quantity, and an overstatement of the chemical quantities actually attributable to each industrial sector. A still greater overstatement results when all SIC codes listed are used, rather than the just the primary SIC code for each production unit.

2.3 Using TUR Techniques to Measure Industry Progress

The number of TUR codes reported by a company had been proposed as a qualitative measure of TUR activity. However, simply counting the number of TUR technique codes reported for each production unit can overstate the amount of TUR activity. For example, the facility in Figure F-1 changed an operations and maintenance procedure, such as how toluene is stored and dispensed, which reduced the quantity of waste. Because this one change applies to all the uses of toluene, it would be reported for each production unit. If there were two BRI's greater than 5%, the data would show that activity 81 occurred twice. If the facility had chosen to break the production process down into 20 units, the activity 81 could have been reported as many as 21 times. This gives the appearance of more TUR activity than may actually be occurring.

The TUR codes also give no indication of how much TUR was associated with each code. It is often difficult to classify process changes; several TUR codes may apply. Therefore, a small improvement could have several TUR codes, while a large-scale input substitution could have just one TUR code.

2.4 Incomplete Records

Incomplete records are records that do not have all three levels of information (chemical, production unit, and chemical-production unit) in the extract files. Figure F-2 shows an example of this type of problem. The records on the left show what a complete record would look like. The records on the right are for the same information with some portions missing. Production Unit 1 is missing the Production Unit level information, Production Unit 2 is missing

Complete Record

Chemical Record

E TA ADOLGA L	_	Oli. Talaana		
Facility: ABC Metals In	C.	Chemical: Toluene	·	
Manufactured	0	Gen. Byproduct	200,000	
Processed	0	Shipped in Product	0	
Otherwise Used	200,000		. *	

Production Unit Record

Facility: AB	C Metals Inc.			
Prod. Unit	1	2	3	4
Product	Wire	Wire	Ball Bearing	Metal Parts
Process	Degrease	Bending	Wastewater Treat.	Stamping
SIC Codes	3643	3629	3499	3499

Chemical - Production Unit Record

Facility: ABC Metals Inc.		Chemical: Toluene			
Production Unit: 1		2	3	4	
Base Year	87	90	90	91	
Quantity Code	С	С	С	. c	
BRI	-200	25	5	50	
ERI	-200	25	5 🗽	50	
TUR Codes		51,81	51,81	51,81	

Incomplete Record

Chemical Record

Facility: ABC Metals Inc.	Chemical: Toluene		
Manufactured	0	Gen. Byproduct	200,000
Processed	0	Shipped in Product	0
Otherwise Used	200,000		

Production Unit Record

Facility: ABC Metals Inc.					
Prod. Unit	1	2	3	4	
Product	missing	Fuses	missing	Metal Parts	
Process	missing	Degreasing	missing	Stamping	
SIC Codes	missing	36293643	missing	3499	

Chemical - Production Unit Record

Facility: ABC Me	Chemical: Toluene			
Prod Unit:	1	2	3	4
Base Year	87	missing	missing	91
Quantity Code	С	missing	missing	C
BRI	-200	missing	missing	50
ERI	-200	missing	missing	50
TUR Codes		missing	missing	51,81

the Chemical-Production Unit level information, and there is no information at all for production unit 3.3

Whereas the records on the left in Figure F-2 show that 200,000 lbs of toluene were used in four different production units, for the records on the right it appears that 200,000 lbs of toluene were used in only two production units, number 1 and 4. However, production unit 1 is missing the production unit level information. For the methodology, this would give the impression that the entire 200,000 pounds of toluene was used in SIC code 3499 and that the 50% BRI was related to the entire 200,000 pounds.

2.5 Incomplete Metal Bender Exemption Records

Metal Bender Exemptions are for metalworking facilities that process copper or steel (nickel, chromium, and manganese) only by changing the shape of the solid metal, have an aggressive scrap metal recycling program, and have no federal Form R reportable releases of the metal other than transfers to a recycler or scrap broker. This exemption was first available in 1993. Although these facilities are still required to report under TURA, they only submit a Form R, a Form S coversheet, and Section 1 of the Form S for the metal. They are not required to pay a filing fee or file a TUR plan for the exempted metal. There are two major problems with the reporting procedures for metal benders.

First, during the first years of metal bender claims, there was a considerable amount of confusion about which metals exemptions were being claimed for. Because the DEP did not have this information readily available, and there was confusion about how the information would be handled in FMF, the 1993 information for metal benders was not available until August 1995, nine months after the other 1993 data was released. At this time, there are still a few metal benders for which TURA data is not available for the years 1991, 1992 and 1993, with most of the missing records in 1993. The result of this problem is that the extract files appear to show a decrease in chemicals in 1993, but, in fact, it is due only to information missing from the extract files. The amount of this material missing is difficult to determine but is probably in the range of 12 to 17 million pounds in 1991 and 1992 and 5 million pounds in 1993.

Furthermore, it is not possible to determine from the extract files which facilities have requested a metal bender exemption or for what chemicals exemptions have been requested. It is difficult to clarify this issue, because the information is not readily available at DEP.

Second, since the facilities are only required to fill out Section 1 of the Form S when submitting for an exempted metal, there is no Chemical-Production Unit record and therefore no link to the

³ Note that this is an example only. Most incomplete records would only have one of these problems. All three are shown here in one record for illustration only.

industry SIC code in the Production Unit record. This means that use information for exempted metals can not be tracked by industry from 1993 onward. Because the metal bender exemption was not available until 1993, the 1990-1992 extract files include the exempted metals (except as noted above). The amount processed in these years is in the range of 74 to 83 million pounds of chemicals (mostly copper). These quantities cannot be tracked by industry in 1993 and therefore those industries appear to have a significant decrease in amount of chemical processed in 1993. In addition, when progress is measured for the specific chemicals the data shows incorrectly that significant TUR progress has been made for these chemicals.

2.6 Incomplete Wastewater Treatment Production Units Records

Facilities that use listed chemicals to treat wastewater are required to include the quantity so used in calculating the total amount of the listed chemical used at the facility and report that total in Section 1 of the Form S (Chemical level record). They are also supposed to answer 'Yes' to the question in Section 2 of the Form S 'Is this chemical used to treat waste or control pollution?' and include a code for the amount used to treat waste.⁴

Since the chemicals are used in quantities as high as 27 million pounds, the amount code ranges are not very useful. Facilities have the option to enter the exact amount used to treat waste but that option is not consistently exercised. The facility is not required to fill out Sections 3 of the Form S for wastewater treatment production units nor are they required to include information on the Form S Coversheet Production Unit record section for wastewater treatment units.

Because of this reporting procedure, if a chemical is used only for wastewater treatment at a facility, the amount used is reported by the facility but no production unit information is provided and the record is incomplete. The result is that the use of the chemical can not be tracked by industry. In addition, since there is no BRI information, there is no indication of TUR activity for wastewater treatment chemicals.

If a chemical is used both in wastewater treatment and in a production unit, there is no indication of how much should be attributable to each process. It could be a significant distortion of progress to assume that the production unit (and its BRI) applies to the entire quantity reported. In addition, there were many instances where facilities had reported production units which were wastewater treatment, although DEP instructs facilities not to do so.

⁴ The amount codes are the same as those mentioned previously: A = 0 to 5,000 lbs; B = > 5,000 lbs to 10,000 lbs; and C = > 10,000 lbs

FACILITY:	ID:		TOWN:

SURVEY TO MEASURE PROGRESS FROM 1987

The purpose of this survey is for DEP to develop a rough estimate of the 1987 chemical use and byproduct levels. We do NOT expect anyone to conduct an extensive research project or hire an outside TURP to do any of the work. If this is necessary, please do not participate in this survey.

participate in this survey.
QUESTIONS TO BE ASKED OF EVERY FIRM CONTACTED
1. Are you the TURA contact at your facility, or is there another contact at your facility? Yes: Position: Please go to # 3 No: Please go to question #2
2. Who is the TURA contact? Name: Position: Telephone number: Inside house: Outside:
3. How long have you held your current position? Years:
4. Did your facility have 10 FTE's in 1987? Yes: No:
5. If you worked at your facility any time between 1987 and 1989, were you responsible/ would you have been responsible for reporting TRI information? Yes: Please go to # 7 No: Please go to # 6
6. Is the person that was responsible for reporting between 1987 and 1989 still working at your facility? Yes: Name: Position:
7. How accurate do you feel the information was during reporting years 1987 to 1989?
8. We are interested in whether production levels changed significantly between 1987 and [the first year we have reporting data for your facility]. By what percent do you think they increased or decreased during this time period?

in your product and [t facility] that byproduct gener	ested in whether there were any significant changes ion processes or product formulations between 1987 he first year we have reporting data for your could have influenced toxic chemical use or ration. What were they?
activities betw Yes:	r facility engage in any pollution prevention ween 1987 and 1989? Please go to #11 Please go to #12
processes?	used as a baseline for any of your production For what chemicals:
No:	Why?

12. Were there any other factors that would have influenced your byproduct generation? (for example, facility shut down for a significant time period)

RECYCLING QUESTIONS

The chart below lists each TURA chemical that you reported recycling. For each chemical DEP has the following information:

- * The first year you submitted recycling information to DEP
- * The pounds you recycled (combined on site, off site, and energy recovery) the first year your facility submitted recycling information to DEP.

Please indicate on the chart below the corresponding recycling data for 1987.

In addition, could you please indicate the accuracy of your estimate: very accurate; accurate; rough estimate; not reliable.

		I				
			RECY	CLE		
		Li	3S		LBS 1987	:
CHEMCIAL NAME: YEAR:						
ACCURACY: Very	accurate:	Accurate:	Rough Estimate	: Not	Reliable:	
CHEMICAL NAME: YEAR:						
ACCURACY: Very	accurate:	Accurate:	Rough Estimate	: Not	Reliable:	
CHEMICAL NAME: YEAR:						
ACCURACY: Very	Accurate:	Accurate:	Rough Estimate	: Not	Reliable:	

CERCLA QUESTIONS

The chart below lists each CERCLA chemical your facility submitted data to DEP. For each chemical, DEP has the following information:

- * The first year you facility submitted data for that chemical
- * The pounds of use
- * The pounds of byproduct generated
- * The pounds transferred/released

Please indicate on the chart below the corresponding data for 1987.

In addition, could you please indicate the accuracy of your estimate: very accurate; accurate; rough estimate; not reliable.

	USE		BYPRODUCT		TRANSFERS & RELEASES	
	FIRST YEAR LBS	LBS 1987	FIRST YEAR LBS	LBS 1987	FIRST YEAR LBS	LBS 1987
CHEMICAL: YEAR:						
Accuracy:	Very Accur	rate: Ac	curate:	Rough Estin	nate: Not	Reliable:
CHEMICAL: YEAR:						
Accuracy:	Very Accur	ate: Ac	curate:	Rough Estin	nate: No	ot Reliable:
CHEMICAL: YEAR:						
Accuracy:	Very Accur	ate: Ac	curate:	Rough Estin	nate: No	ot Reliable:

The chart below lists each TURA chemical your facility submitted data to DEP. For each chemical , DEP has the following information:

- * The first year your facility submitted data for that chemical
- * The pounds of use
- * The pounds of byproduct generated
- * The pounds transferred/ released

Please indicate on the chart below the corresponding data for 1987

In addition, could you please indicate the accuracy of your estimate: very accurate; accurate; rough estimate; not reliable.

accurace; ro	ugh estimate;	not refrable.					
	US	E	BYPRODUCT		TRANSFERS	TRANSFERS/RELEASES	
	FIRST YEAR LBS	LBS 1987	FIRST YEAR LBS	LBS 1987	FIRST YEAR LBS	LBS 1987	
CHEMICAL: YEAR:							
Accuracy:	Very Accurate	: Accurate:	Rough E	stimate	Not Reliable	<u>.</u>	
CHEMICAL: YEAR:							
Accuracy:	Very Accurate:	Accurate:	Rough E	stimate:	Not Reliable	:	
CHEMICAL: YEAR:							
Accuracy:	Very Accurate:	Accurate:	Rough E	stimate:	Not Reliable		
Chemical:							
Accuracy:	Very Accurate:	Accurate:	Rough E	stimate:	Not Reliable	•	

Appendix G2 - Details of 1987 Baseline Surveys

A. Details of Pilot Survey to Establish 1987 Baseline

Compile data for each specific company

Answer questions/provide further explanation

Results as of August 9, 1995

Make initial contact

DEP SURVEY PROCESS

• Fax survey

 Take answers over the phone 	
Survey dates: August 2, 1995 - August 8, 1995 Hours Spent: Companies in sample:	18 25
Companies with which we made contact: (one facility has ceased operating)	24
Companies reached with one call	15
Companies reached with two calls	7
Companies reached with three or more calls	2
Companies in which appropriate person was reached: (Five contacts were on vacation, one facility was dropped because the data was unclear, one facility had no appropriate contact).	17
Companies which agreed to participate:	17
Completed surveys	4
Companies providing immediate answers on phone:	3
Companies answering on phone after receiving fax:	2
Companies with partial response:	1
Companies that had no data:	1
Companies asking for survey to be faxed:	11
Companies that agreed to do survey but had not	
called back vet:	1

B. Details of Full Survey

DEP has begun the survey with the top twenty facilities in Massachusetts and those randomly chosen from the Recycle list. The remainder of the facilities will be surveyed in the near future and the results will be made available.

Top 20 Survey		
Survey dates:	Oct. 5, 1995 - Nov. 13, 1995	
Facilities contacted:	14	
Facilities not applicable - didn't fit so	urvey criteria 2	
Facilities closed	3	
Facilities that had already given DE	P necessary	
data without survey	1	
Facilities that completed the survey	11	
Facilities that had not responded to	survey as	
of November 13, 1995	3	
Facilities that responded with 1 call	5	
Facilities that responded with 2 calls	s 1	
Facilities that responded with 3 or r		

Recycle list Survey

Initial contact to 43 of the 60 recycle facilities had been completed as of November 13, 1995. These are the results at this time:

Survey dates: Oct. 17, 1995 - Nov. 13, 1995

Facilities that data has been collected to survey	50
Facilities that have been contacted	43
Facilities that DEP has not contacted	7
Facilities that remain for data collection and survey	10
Facilities that have completed survey	18
Facilities that cannot complete survey- no one available	
at facility at this time	1
Facilities that will not complete survey because they	
considered it to be too much work	2
Facilities that responded with one call:	10
Facilities that responded with two calls:	4
Facilities that responded with three or more calls:	3

Appendix H - TURA DATA ISSUES

Introduction

DEP's Data Exception reports and TURI's Data Consistency reports identified issues with TURA data in the areas of data quality, reporting practices and FMF system utilities. Many of those issues have been resolved or are scheduled to be fixed by the next data release. Other issues have yet to be resolved and scheduled for fixing. This appendix briefly describes the status of the issues identified and the schedule for fixing problems that still exist.

The types of problems that the Data Exception report identifies include:

- Byproduct quantity greater than total use
- Byproduct quantity less than total TRI transfers and releases
- Byproduct quantity greater than total TRI transfers and releases when there is no destructive treatment of the waste
- BRIs that are greater than 100 or very negative

The report flags all data that could potentially be in error. DEP verifies that the data was entered correctly. Data entry errors are corrected. Facilities are notified of data that appears to be in error and requested to submit corrected Forms S and R.

The DEP has currently run the exception report on all 1990, 1993 and 1994 data. Facilities have been notified of any problems found. Data entry errors will be corrected in the next data release and facility corrections will be entered as they are received. The DEP has checked some of the 1991 and 1992 data manually and corrected errors found or notified facilities of problems.

The TURI Data Consistency reports have been run on all the data in the extract files (1990 through 1993). In addition to flagging the types of errors mentioned above, the TURI reports also look for problems with:

- incomplete records
- inconsistently reported facility ID numbers, names, locations, and production unit numbers
- invalid or unexpected values (production ratio less than zero or much greater than 10 without a corresponding change to use and byproduct)
- problems with the extract files
- SIC code anomalies

The November 1994 data release contained many of these issues, some of which were corrected in the August 1995 data release. The remaining problems are expected to be corrected in the January 1996 data release.

Resolved Issues

A number of problems with the extract program identified in the November 1994 data release were resolved in the April 1995 release. These include:

- The extract program was creating duplicate records in the extract files in one case over 10,000 records were added to a file. The extract program was fixed.
- Blank records or nearly blank records created by the extract program.
- The information about which SIC code was the primary SIC code for a production unit was not included in the extract files. This was fixed by adding a new field "Primary SIC" to the production unit file with a "Y" if the SIC code was the primary and an "N" if it was not.

In addition, the August 1995 data release included corrected form S and R data received from facilities through June of 1995

Issues Scheduled to be Fixed

The following problems are expected to be fixed in the next data release

- Correctly 'zeroing out' existing 'no delete' records
- Data entry errors
- Facilities with one year's data entered twice under different ID numbers
- Facilities entered under different ID numbers in different years
- Data not entered for all Metal Bender Facilities
- Records incomplete because of data entry error

In addition, facilities have been notified of known or suspected facility reporting errors and have been requested to submit corrected reports. These will be fixed as they are received from the facilities.

Issues Not Yet Resolved

Some problems are still being verified by DEP or the appropriate solution has not yet been identified. These include:

- duplicate key records
- no delete function
- metal bender production units not entered
- wastewater treatment chemicals

Appendix I - TURA UNIVERSES

Universes

The data reported by TURA filers from 1990 through 1993 included many inconsistencies due to the phasing in of industries and chemicals and due to changing circumstances at reporting facilities. There were also anomalies in the data caused by data issues described in Chapters 3 and 4. In order the measure progress, the methodology took these inconsistencies into account by creating separate subsets or 'universes' of data. Each universe had a specific purpose in the methodology. This appendix describes what records were included in each universe, the purpose of the universe, and other characteristics of each universe such as the size and the weighted average production ratio.

The TURA regulations included a phase-in period for TURA filers based on the type of facility and the chemicals used. In 1990, only manufacturing facilities (SIC codes 20 through 39) were required to report. Facilities in the non-manufacturing SIC codes were required to report beginning in 1991. For chemicals, the original list of TURA chemicals were required to be reported in 1990. From 1991 to 1993, a third of the CERCLA chemicals were added each year. In order to allow for the phasing-in of filers and chemicals, most of the universes included only chemicals or facilities reportable in specific years.

Another inconsistency with the TURA data involves trade secret data. Facilities are allowed to claim that TURA information needs to be kept confidential. In this case, the facility files the required forms but the data is not made available to anyone outside of DEP. This causes problems with the methodology when a facility reports a chemical in one or more years and then claims it as trade secret in following years. This causes the appearance of a decrease in reported quantities when in fact it is only a decrease in what is available for analysis in the extract files and standard reports. Any chemicals that were claimed trade secret in any year were excluded from all of the methodology universes, except "All TURA."

Some data errors described in Chapter 4 cause problems with the methodology. These included duplicate key records, duplicate facilities, 'no delete' records, and records with incomplete production unit level information. These records were excluded from some of the universes depending on which data elements were being utilized.

Table I-1 shows the ten different universes of TURA data examined and what types of records were included in each one. The text following the table describes more fully what aspects of the TURA data each universe can be used to examine. In Appendix J are summary reports for each universe. The summary report shows the number of facilities, chemicals, and records included in each universe as well as the different quantities reported for facilities and chemicals in that universe. Weighted average production ratios for each universe and the portion of the universe that was used to calculate it, are included at the end of this Appendix.

TURA Data Universes

		Universe									
	All TURA	0	1	2	3	4	5	6	7	8	9
Duplicate Keys											
Trade Secret Inconsistencies	x										
No Deletes	x .										
Duplicate Facilities	x										
Production Unit Inconsistencies	x	x			х	х	х	x	x	x	х
90 Reportables	x	х	х	x	x	х	x	_x	х		
91 Reportables	x						x	х	х	х	
92 Reportables	X							х	х		X
93 Reportables	x										

Table I-1

An 'x' means that those records are included in a universe.

All TURA - This universe included all chemical records that were in the DEP extract files with the exception of duplicate key records, (less than 3 million pounds in all years). This universe show the total amount in the extract files but can not be used for measuring progress because of the many inconsistencies previously described.

Universe 0 "1990 Reportables" - This universe includes records for any chemical and facility that would have been required to report in 1990, regardless of whether or not the facility actually reported the chemical in 1990. This universe contains approximately 65 percent of all facilities reporting annually and over 90 percent of the chemical amounts reported. It is the largest "consistent" universe available in the extract files.

Universe 1 "1990 Reportables with Consistent Production Unit Data" - This universe is a subset of universe 0 that excludes the quantities for any record that was incomplete (missing production unit or BRI type information). It was developed to measure progress for specific industries, and to do other production unit-level analysis.

Universe 2 "Single Consistent Production Unit/Chemical/Facility - This universe was a subset of Universe 1. It included any 1990 Reportable Chemicals and SIC facilities for which one and only one Production Unit/Chemical/Facility was reported consistently over all four years. Where only one production unit is reported, the production unit BRI and ERI are the same as the facility-wide chemical BRI and ERI. These records can be used to generate a state-wide aggregated BRI.

This universe contains 40 percent of the facilities reporting annually, one third of the total use, and 20 percent of the generated byproduct.

Universe 3 "Consistent Facility/Chemical" - This universe was a subset of Universe 0. It included any 1990 reportable Chemicals and SIC facilities where the same chemical was reported by the facility for every year from 1990 to 1993. This universe calculation of trends for a group of facilities and chemicals which were always reported. It will assist in understanding the effect on the measurement of progress of chemicals rising above and dropping below the reporting threshold. The universe contains over 65 percent of the facilities reporting annually, over 60 percent of the total use and generated byproduct.

Universe 4 "Consistent Facility" - This universe is a subset of Universe 0. It included all records for 1990 Required chemicals reported by a facility that reported at least one 1990 Required Chemicals/SICs in all four years, 1990-1993. By examining the trends of facilities that reported consistently, this universe allows testing whether facility movement into and out of the reporting universe affects the overall trends. This universe includes over 65 percent of the facilities annually reporting and over 80 percent of the total use and generated byproduct.

Universe 5 "Year to Year Change 1990 - 1991" - This universe included all records for chemicals/SIC level production units that were reportable and reported in 1990 and 1991. This universe is a subset of Universe 0. It includes only records that were reported in both 1990 and 1991 so that an accurate weighted average production ratio can be calculated. It can only be used to measure change from 1990 to 1991.

Universe 6 "Year to Year Change 1991 - 1992" - This universe included all chemicals that were reportable and reported by a facility in 1991 and 1992. It includes all 1990 and 1991 reportable chemicals as well as both manufacturing and non-manufacturing SICs. It is similar to Universe 5, but is used to measure change from 1991 to 1992.

Universe 7 "Year to Year Change 1992 - 1993" - This universe includes all chemicals that were reportable and reported by a facility in 1992 and 1993. It includes all 1990, 1991, and 1992 reportable chemicals and both manufacturing and non-manufacturing SICs. It is similar to Universe 5, but is used to measure change from 1992 to 1993.

Universe 8 "1991 Reportables" - This universe includes only records for chemicals and facilities that first became reportable in 1991. It provides a measure of the progress for these chemicals from 1991 to 1993. It can only be used to measure progress from 1991 to 1993.

Universe 9 "1992 Reportables" - This universe includes only records for chemicals and facilities that first became reportable in 1992. It provides a measure of the progress for these chemicals from 1992 to 1993. It can only be used to measure progress from 1992 to 1993.

Because there is only 1993 data for chemicals that first became reportable in 1993, no analysis was done on progress for these chemicals. They will be added to the methodology when another year's worth of data is available.

Weighted Average Production Ratios

A weighted average production ratio (PR_{wA}) was calculated for applicable years for each of the universes. The results for all universes or subsets of universes are shown in table I-2.

Weighted Average Production Ratios for Universes

	1991	1992	1993
Universe 0 - 1990 Reportables	0.972	0.991	1.061
Subset of Universe 0 - Top "20" Facilities	0.948	0.955	1.062
Subset of Universe 0 - Non Top "20" Facilities	1.040	1.077	1.061
Universe 1 - Complete Universe 0 Records	0.983	0.992	1.071
Universe 2 - Single Production Unit Chemicals	N/A	N/A	N/A
Universe 3 - Consistent Chemicals	0.970	0.975	1.066
Universe 4 - Consistent Facilities	0.972	0.986	1.067
Universe 5 - Reported in 1990 and 1991	0.972	N/A	N/A
Universe 6 - Reported in 1991 and 1992	N/A	0.987	N/A
Universe 7 - Reported in 1992 and 1993	N/A	N/A	1.065
Universe 8 - 1991 Reportables	N/A	0.945	1.108
Universe 9 - 1992 Reportables	N/A	N/A	1.055

Table I-2

The PR_{wA} can only be calculated from records that have two consecutive years worth of data and a production ratio greater than zero in the second year. Since not all records in a universe fit this criteria, the percent of the data used to calculate a PR_{wA} varied from one universe to another. Table I-3 shows the percent of each universe's total use that figured into the PR_{wA} .

Percent of Total Use used to Calculate PRwA

	1991	1992	1993
Universe 0 - 1990 Reportables	87	93	97
Subset of Universe 0 - Top "20" Facilities	96	97	96
Subset of Universe 0 - Non Top "20" Facilities	70	86	89
Universe 1 - Complete Universe 0 Records	88	94	97
Universe 2 - Single Production Unit Chemicals	N/A	N/A	N/A
Universe 3 - Consistent Chemicals	95	97	99
Universe 4 - Consistent Facilities	91	96	98
Universe 5 - Reported in 1990 and 1991	94	N/A	N/A
Universe 6 - Reported in 1991 and 1992	N/A	91	N/A
Universe 7 - Reported in 1992 and 1993	N/A	N/A	89
Universe 8 - 1991 Reportables	N/A	77	69
Universe 9 - 1992 Reportables	N/A	N/A	85

Table I-3

Total Chemical Amounts Reported on Form S and R (ALLCHEMS.RSL)

Release Date:8/29/1995 Universe: All TURA All Reporting Facilities and Chemicals

Page 1

	1990	1991	1992	1993
TURA Information				
Manufactured Amount :	25,806,774	15,257,099	20,405,477	19,862,748
Processed Amount :	764,961,043	845,970,088	821,773,637	806,688,917
Otherwise Used Amount :	136,380,491	151,644,838	191,439,678	188,488,448
Total Use Amount:	927,148,308	1,012,872,025	1,033,618,792	1,015,040,113
Generated Byproduct Amt :	114,214,580	135,144,852	144,588,903	137,052,977
Shippped in/as Prod Amt :	329,044,771	453,459,967	432,253,186	483,678,133
TRI Information				
Total Emissions:	20,927,774	20,751,689	17,067,110	14,413,618
Discharge to POTW Amt:	3,398,098	2,143,012	4,253,702	3,744,043
Transfer Offsite Amt:	11,896,268	32,292,654	37,870,064	36,537,456
Total Releases and Transfers:	36,222,140	55,187,355	59,190,876	54,695,117
				•
General Information				
				0=4
Number of Facilities :	677	719	698	654
Number of Chemicals :	129	146	160	179
Number of Records :	2,110	2,363	2,513	2,503

Total Chemical Amounts Reported on Form S and R (ALLCHEMS.RSL) Release Date:8/29/1995 Universe: Univ-0 All Chemicals/SICs Reportable in 90

Page 1

	1990	1991	1992	1993
TURA Information				
Manufactured Amount :	25,531,959	7,444,207	8,500,285	6,322,692
Processed Amount :	753,479,769	723,791,014	658,024,794	637,016,428
Otherwise Used Amount :	126,948,628	124,461,342	121,074,364	111,014,677
Total Use Amount:	905,960,356	855,696,563	787,599,443	754,353,797
Generated Byproduct Amt :	110,369,343	112,328,998	105,833,339	96,552,630
Shippped in/as Prod Amt:	318,173,895	344,760,629	320,858,622	334,632,394
TRI Information				
Total Emissions :	20,723,828	17,010,102	14,614,308	11,320,847
Discharge to POTW Amt:	3,188,173	1,708,104	1,864,793	1,479,757
Transfer Offsite Amt:	11,486,742	29,685,722	35,249,554	33,774,797
Total Releases and Transfers:	35,398,743	48,403,928	51,728,655	46,575,401
General Information				
Number of Facilities :	663	641	629	572
Number of Chemicals :	110	109	110	101
Number of Records :	1,985	1,933	1,898	1,697

Total Chemical Amounts Reported on Form S and R (ALLCHEMS.RSL)

Release Date:8/29/1995 Universe: Univ-1 Complete 90 Reportable Chemicals & SICs

Page 1

1990 1991 1992 1993 **TURA Information** Manufactured Amount: 25,377,538 7,188,008 7,810,425 5,876,274 Processed Amount: 727,341,347 702,655,041 633,175,691 594,255,917 Otherwise Used Amount: 112,351,313 114,254,972 114,526,858 107,110,674 824,098,021 755,512,974 707,242,865 Total Use Amount: 865,070,198 Generated Byproduct Amt: 107,010,186 109,941,381 101,793,937 93,707,459 Shippped in/as Prod Amt: 297,324,524 281,639,496 322,287,067 297,410,531 TRI Information Total Emissions: 20,331,316 16,793,541 14,417,012 11,142,824 Discharge to POTW Amt: 3,051,554 1,480,286 1,657,283 1,190,564 Transfer Offsite Amt: 11,190,542 28,303,771 32,514,336 32,089,094 Total Releases and Transfers: 34,573,412 46,577,598 48,588,631 44,422,482 **General Information** Number of Facilities: 637 621 602 545 Number of Chemicals: 108 108 98 109 Number of Records: 1,838 1,790 1,589 1,874

Number of Chemicals:

Number of Records:

Total Chemical Amounts Reported on Form S and R (ALLCHEMS.RSL) Release Date:8/29/1995 Universe: Univ-2 Consistent Single-PU Chemicals

Page 1

78

692

78

692

78

692

1990 1993 1991 1992 **TURA Information** 2,316,505 Manufactured Amount: 13,126,176 3,405,814 3,563,289 Processed Amount: 531,652,394 502,703,753 420,883,259 404,972,031 Otherwise Used Amount: 40,574,010 60,930,878 58,988,508 61,694,162 567,040,445 483,435,056 468,982,698 Total Use Amount: 585,352,580 Generated Byproduct Amt: 47,642,201 46,904,750 44,674,229 44,852,855 Shippped in/as Prod Amt: 192,402,027 210,918,492 186,313,719 202,392,594 TRI Information Total Emissions: 4,814,960 7,136,700 6,475,541 5,582,638 Discharge to POTW Amt: 588,060 481,092 1,830,166 687,942 Transfer Offsite Amt: 4,984,529 10,503,274 12,648,707 14,705,248 20,001,300 Total Releases and Transfers: 13,951,395 17,666,757 18,819,405 **General Information** 325 325 Number of Facilities: 325 325

78

692

Total Chemical	Amounts Reported o	n Form S and R	(ALLCHEMS.RSL)

Release Date:8/29/1995 Universe: Univ-3 Facility/Chemical Reported All 4 Years

Page 1

	1990	1991	1992	1993
TURA Information				
Manufactured Amount :	21,631,784	5,761,982	5,410,707	4,220,911
Processed Amount :	686,215,324	643,353,227	570,673,236	547,365,495
Otherwise Used Amount :	98,496,176	101,064,810	98,742,555	95,251,275
Total Use Amount:	806,343,284	750,180,019	674,826,498	646,837,681
Generated Byproduct Amt :	89,367,043	90,174,987	84,825,723	82,637,014
Shippped in/as Prod Amt :	265,697,946	280,191,265	255,143,618	268,117,235
) ·		
TRI Information				
Total Emissions:	11,931,921	11,091,884	9,845,458	8,563,493
Discharge to POTW Amt:	2,524,116	1,085,643	1,010,834	879,381
Transfer Offsite Amt:	8,406,775	22,888,573	26,634,611	26,332,482
Total Releases and Transfers:	22,862,812	35,066,100	37,490,903	35,775,356
General Information				
Number of Facilities :	421	421	421	421
Number of Chemicals :	84	84	84	84
Number of Records :	1,089	1,089	1,089	1,089

Total Chemical Amounts Reported on Form S and R (ALLCHEMS.RSL)

Page 1

Facilities Reporting All 4 Years Release Date:8/29/1995 Universe: Univ-4

	1990	1991	1992	1993
TURA Information				
Manufactured Amount :	25,032,451	6,058,629	7,928,316	5,893,080
Processed Amount :	715,846,461	686,636,844	619,612,736	598,436,935
Otherwise Used Amount :	117,854,634	112,520,785	108,834,692	101,293,797
Total Use Amount:	858,733,546	805,216,258	736,375,744	705,623,812
Generated Byproduct Amt :	103,784,546	102,334,246	98,057,355	90,391,108
Shippped in/as Prod Amt :	287,517,755	310,039,109	288,114,442	298,402,336
TRI Information				
Total Emissions:	17,752,660	14,611,160	12,493,496	9,742,181
Discharge to POTW Amt:	2,976,679	1,457,900	1,649,103	1,241,953
Transfer Offsite Amt:	10,451,736	27,181,920	31,454,881	30,222,832
Total Releases and Transfers:	31,181,075	43,250,980	45,597,480	41,206,966
General Information				
Number of Facilities :	446	446	446	446
Number of Chemicals :	106	107	108	98
Number of Records :	1,608	1,595	1,559	1,457

Total Chemical Amounts Reported on Form S and R (ALLCHEMS.RSL)

Release Date:8/29/1995 Universe: Univ-5 Facility/Chemicals Reported in 90 and 91

	1990	4004	1000	1000
TURA Information	1990	1991	1992	1993
Manufactured Amount :	25,313,367	6,623,071	5,876,907	4,220,911
Processed Amount :	712,931,282	668,989,960	584,345,183	548,786,082
Otherwise Used Amount :	113,645,310	114,470,579	106,000,766	95,639,371
Total Use Amount:	851,889,959	790,083,610	696,222,856	648,646,364
Generated Byproduct Amt :	102,323,194	102,647,929	91,633,288	82,919,980
Shippped in/as Prod Amt :	282,993,677	299,337,127	266,815,387	269,444,960
TRI Information				
Total Emissions :	17,655,485	15,446,694	12,035,706	8,627,714
Discharge to POTW Amt:	2,882,760	1,412,849	1,127,418	880,081
Transfer Offsite Amt:	10,163,988	26,763,028	29,334,004	26,629,789
Total Releases and Transfers:	30,702,233	43,622,571	42,497,128	36,137,584
General Information				
Number of Facilities :	552	552	497	424
Number of Chemicals :	96	96	89	85
Number of Records :	1,543	1,543	1,355	1,111

Total Chemical Amounts Reported on Form S and R (ALLCHEMS.RSL)

Facility/Chemicals Reported in 91 and 92

Page 1

Release Date:8/29/1995 Universe: Univ-6

TUDA Information	1990	1991	1992	1993
TURA Information				
Manufactured Amount :	25,614,959	12,787,139	11,366,650	6,666,172
Processed Amount :	757,590,682	824,613,167	759,272,220	746,556,641
Otherwise Used Amount :	128,837,628	146,618,068	141,632,684	133,745,143
Total Use Amount:	912,043,269	984,018,374	912,271,554	886,967,956
Generated Byproduct Amt :	111,376,558	129,995,688	120,571,793	112,452,037
Shippped in/as Prod Amt :	322,071,300	429,851,250	399,218,574	436,032,013
TRI Information				
Total Emissions :	20,817,452	20,652,078	16,835,991	13,517,891
Discharge to POTW Amt:	3,188,882	2,108,972	2,359,296	2,228,071
Transfer Offsite Amt:	11,490,933	30,956,943	36,566,132	35,297,164
Total Releases and Transfers:	35,497,267	53,717,993	55,761,419	51,043,126
	•			
General Information				
Number of Facilities :	668	701	681	632
Number of Chemicals :	114	137	142	133
Number of Records :	2,021	2,265	2,225	2,044

Total Chemical Amounts Reported on Form S and R (ALLCHEMS.RSL)

Release Date:8/29/1995 Universe: Univ-7 Facility/Chemicals Reported in 92 and 93

Page 1

	1990	1991	1992	1993
TURA Information				
Manufactured Amount :	25,733,774	15,147,099	17,352,985	15,130,314
Processed Amount :	760,579,552	827,361,280	818,429,801	790,179,667
Otherwise Used Amount :	133,968,288	146,635,108	181,756,123	173,094,085
Total Use Amount:	920,281,614	989,143,487	1,017,538,909	978,404,066
Generated Byproduct Amt :	111,872,608	130,622,119	139,379,676	132,716,389
Shippped in/as Prod Amt :	324,766,999	434,343,609	428,937,010	468,796,798
TRI Information				
Total Emissions:	20,821,663	20,659,178	16,977,157	13,611,612
Discharge to POTW Amt:	3,226,957	2,109,742	3,798,871	3,160,815
Transfer Offsite Amt:	11,502,824	31,334,264	37,223,604	35,999,058
Total Releases and Transfers:	35,551,444	54,103,184	57,999,632	52,771,485
General Information				
Number of Facilities :	670	702	694	647
Number of Chemicals :	119	142	153	143
Number of Records :	2,054	2,280	2,479	2,326

Total Chemical Amounts Reported on Form S and R (ALLCHEMS.RSL)

Fac/Chems First Reportable in 91

Page 1

Release Date:8/29/1995 Universe: Univ-8

	1990	1991	1992	1993
TURA Information				
Manufactured Amount :	83,000	2,802,856	2,866,365	343,480
Processed Amount :	4,110,913	76,221,407	101,247,420	108,183,398
Otherwise Used Amount :	1,888,998	22,156,722	20,558,318	22,730,456
Total Use Amount:	6,082,911	101,180,985	124,672,103	131,257,334
Generated Byproduct Amt :	1,007,215	17,634,155	14,738,454	15,895,540
Shippped in/as Prod Amt :	3,897,405	58,871,049	78,359,952	100,046,714
TRI Information				
Total Emissions:	93,345	3,590,122	2,139,540	2,103,125
Discharge to POTW Amt:	0	377,256	480,643	701,104
Transfer Offsite Amt:	1,260	1,271,219	1,316,578	1,483,675
Total Releases and Transfers:	94,605	5,238,597	3,936,761	4,287,904
General Information				
Number of Facilities :	10	138	137	135
Number of Chemicals :	24	64	70	65
Number of Records :	31	296	317	323

Total Chemical Amounts Reported on Form S and R (ALLCHEMS.RSL) Release Date:8/29/1995 Universe: Univ-9

Fac/Chems First Reportable in 92

Page 1

1990 1991 1992 1993 **TURA Information** 8,464,142 5,986,335 Manufactured Amount: 118,815 2,359,960 Processed Amount: 2,988,870 2,748,113 59,157,581 43,623,026 Otherwise Used Amount: 5,130,660 17,040 40,123,439 39,348,942 105,267,355 91,436,110 5,125,113 Total Use Amount: 8,238,345 Generated Byproduct Amt: 496,050 626,431 18,807,883 20,264,352 29,718,436 32,764,785 Shippped in/as Prod Amt: 2,695,699 4,492,359 TRI Information 141,166 93,721 Total Emissions: 4,211 7,100 932,744 Discharge to POTW Amt: 770 1,439,575 38,075 657,472 701,894 Transfer Offsite Amt: 377,321 11,891 Total Releases and Transfers: 54,177 385,191 2,238,213 1,728,359 General Information Number of Facilities: 31 212 237 15 Number of Chemicals: 11 10 5 5 282 Number of Records: 33 15 254

Appendix J2

Universe 1 Data as Percent of All Universe 0 Data				
	1990	1991	1992	1993
Number of Facilities	96%	97%	96%	95%
Number of Chemicals	99%	99%	98%	97%
Number of Records	94%	95%	94%	94%
Manufactured Amount	99%	97%	92%	93%
Processed Amount	97%	97%	96%	93%
Otherwise Used Amount	89%	92%	95%	96%
Total Use	95%	96%	96%	94%
Byproduct Generated	97%	98%	96%	97%
Shipped in or as Product	89%	93%	93%	89%
Transfers to POTW	96%	87%	89%	80%
Transfers Offsite	97%	95%	92%	95%
TRI Releases	98%	99%	99%	98%
Total TRI	98%	96%	94%	95%

Universe 2 Data as Percent of All Universe 0 Data					
	1990	1991	1992	1993	
Number of Facilities	49%	51%	52%	57%	
Number of Chemicals	71%	72%	71%	77%	
Number of Records	35%	36%	36%	41%	
Manufactured Amount	51%	46%	42%	37%	
Processed Amount	71%	69%	64%	64%	
Otherwise Used Amount	32%	49%	49%	56%	
Total Use	65%	66%	61%	62%	
Byproduct Generated	43%	42%	42%	46%	
Shipped in or as Product	60%	61%	58%	60%	
Transfers to POTW	57%	40%	32%	33%	
Transfers Offsite	43%	35%	36%	44%	
TRI Releases	34%	38%	38%	43%	
Total TRI	39%	36%	36%	43%	

Universe 3 Data as Percent of All Universe 0 Data				
	1990	1991	1992	1993
Number of Facilities	63%	66%	67%	74%
Number of Chemicals	76%	77%	76%	83%
Number of Records	55%	56%	57%	64%
Manufactured Amount	85%	77%	64%	67%
Processed Amount	91%	89%	87%	86%
Otherwise Used Amount	78%	81%	82%	86%
Total Use	89%	88%	86%	86%
Byproduct Generated	81%	80%	80%	86%
Shipped in or as Product	84%	81%	80%	80%
Transfers to POTW	79%	64%	54%	59%
Transfers Offsite	73%	77%	76%	78%
TRI Releases	58%	65%	67%	76%
Total TRI	65%	72%	72%	77%

Universe 4 D	Universe 4 Data as Percent of All Universe 0 Data				
	1990	1991	1992	1993	
Number of Facilities	67%	70%	71%	78%	
Number of Chemicals	96%	98%	98%	97%	
Number of Records	81%	83%	82%	86%	
Manufactured Amount	98%	81%	93%	93%	
Processed Amount	95%	95%	94%	94%	
Otherwise Used Amount	93%	90%	90%	91%	
Total Use	95%	94%	93%	94%	
Byproduct Generated	94%	91%	93%	94%	
Shipped in or as Product	90%	90%	90%	89%	
Transfers to POTW	93%	85%	88%	84%	
Transfers Offsite	91%	92%	89%	89%	
TRI Releases	86%	86%	85%	86%	
Total TRI	88%	89%	88%	88%	

Universe 0 "Top 20" Facilities Data as Percent of All Universe 0 Data					
	1990	1991	1992	1993	
Number of Facilities	4%	4%	4%	.5%	
Number of Chemicals	64%	65%	62%	56%	
Number of Records	8%	8%	9%	9%	
Manufactured Amount	75%	42%	28%	5%	
Processed Amount	76%	72%	68%	69%	
Otherwise Used Amount	38%	43%	42%	44%	
Total Use	70%	68%	64%	65%	
Byproduct Generated	40%	38%	38%	41%	
Shipped in or as Product	57%	52%	47%	53%	
Transfers to POTW	10%	21%	24%	18%	
Transfers Offsite	19%	30%	37%	45%	
TRI Releases	13%	13%	13%	15%	
Total TRI	14%	24%	29%	37%	

Universe 0 - Non "Top 20" Data as Percent of All Universe 0 Data				
	1990	1991	1992	1993
Number of Facilities	96%	96%	96%	95%
Number of Chemicals	91%	90%	91%	94%
Number of Records	92%	92%	91%	91%
Manufactured Amount	25%	58%	72%	95%
Processed Amount	24%	28%	32%	31%
Otherwise Used Amount	62%	57%	58%	56%
Total Use	30%	32%	36%	35%
Byproduct Generated	60%	62%	62%	59%
Shipped in or as Product	43%	48%	53%	47%
Transfers to POTW	90%	79%	76%	82%
Transfers Offsite	81%	70%	63%	55%
TRI Releases	87%	87%	87%	85%
Total TRI	86%	76%	71%	63%

Reality Check Facility Data as Percent of All Universe 0 Data				
	1990	1991	1992	1993
Number of Facilities	2%	2%	2%	2%
Number of Chemicals	45%	50%	47%	48%
Number of Records	5%	5%	5%	5%
Manufactured Amount	8%	5%	6%	8%
Processed Amount	3%	3%	3%	4%
Otherwise Used Amount	21%	12%	13%	13%
Total Use	6%	4%	4%	5%
Byproduct Generated	20%	20%	19%	21%
Shipped in or as Product	6%	4%	5%	6%
Transfers to POTW	30%	4%	5%	4%
Transfers Offsite	5%	18%	19%	21%
TRI Releases	14%	11%	12%	14%
Total TRI	12%	15%	16%	18%

This appendix includes the preliminary analysis of 'how a chemical is used' and results for Montreal Protocol chemicals. Chemicals included in each group are listed in Appendix C. Chemical categories were created depending on how a particular chemical was typically reported used. Because so many chemicals are both processed and otherwise used, the following categories were created: mostly processed including styrene, mostly processed and otherwise used, and mostly processed excluding styrene. A brief analysis of the chemical quantities reported and their trends over the four years is presented in the body of the report.

This appendix provides additional information for these categories as well as for Montreal Protocol chemicals. It also includes a sample report for analysis by chemical category. During the course of the study, this type of report was run for every chemical individually, as well as all chemical categories described in Appendix C.

The groups of processed and 'processed and otherwise used' chemicals exhibited different changes in levels of production as measured by the weighted average production ratio (PR_{wa}). In particular, because styrene comprised such a large percent of the quantities reported for processed chemicals, it was the determining factor for normalizing production levels for the entire group. As can be seen in Table J3-1, when styrene was excluded from the group, the PR_{wa} for 'processed' chemicals changed significantly.

The chemicals with styrene showed a decrease in production levels from 1990 to 1992 and a 3% increase in 1993. Those chemicals processed excluding styrene had a decrease in production levels from 1990 to 1991 but had increases of 17% and 15% in 1992 and 1993. The processed and otherwise used chemicals also had a decrease in production levels from 1990 to 1991 followed by an increase in production level of 5% and 14% in 1992 and 1993. The Montreal Protocol chemicals had changes in production levels that were opposite of all other chemicals. They had a 4% increase from 1990 to 1991 and then decreasing production in 1992 and 1993 of 2% and 5% respectively.

Production Ratios	91	92	93
Processed Chemicals with Styrene	0.939	0.942	1.03
Processed Chemicals without Styrene	0.922	1.176	1.15
Processed and Otherwise Used	0.944	1.047	1.142
Montreal Protocol Chemicals	1.044	0.981	0.947

Table J3-1 Chemical Groups Weighted Average Production Ratios

Figures J3-1 and J3-2 show the percent actual and normalized reductions for these four groups of

chemicals. These figures suggest several conclusions about progress:

- styrene does affect the overall numbers for any group that it is in,
- Montreal Protocol chemicals appear to be making significant progress as measured by this methodology on both an actual and normalized basis,
- chemicals that are mostly processed appear to have a greater progress in reducing byproduct use than chemicals that are processed and otherwise used, and
- chemicals that are processed and otherwise used appear to have decreased in total use more than chemicals that are processed.

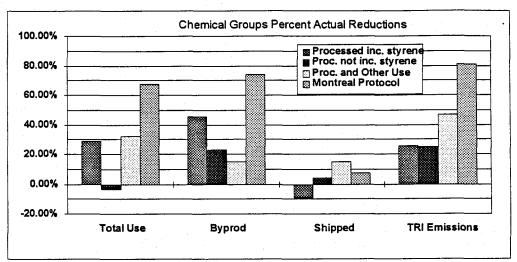


Figure J3-1

Montreal Protocol chemicals conclusions are not surprising. The Montreal Protocol chemicals are being phased-out of production for emissive uses. The reasons for the results for processed and otherwise chemicals is less obvious. If total use is declining for 'processed and otherwise used' chemicals, one would expect byproduct to decline as well. However, the Massachusetts definition of byproduct involves multiple counting of materials that are recycled on site when the recycling is not an integral part of the process. If more non-integral recycling were occurring, the total use would decrease but the byproduct would increase.

Additional analysis is needed in this area once the existing data issues are resolved and when the 1994 TURA data becomes available.

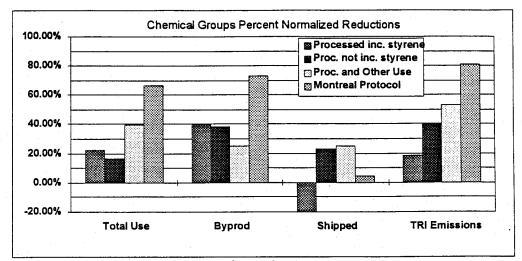


Figure J3-2

	Percent Reductions 1990 to 1993				
	Byproduct Total Use				
Universe	Actual	Normalized	Actual	Normalized	
Processed Chemicals with styrene	45%	40%	29%	22%	
Proc. Chemicals without styrene	23%	38%	-4%	17%	
Processed & Otherwise Used Chemicals	15%	25%	32%	40%	

Table J3-2 Actual and Normalized Progress for Selected Universes

Special Group Chemical Quantities for 1990-1993 (SOMECHM1.RSL)
Release Date: 1/22/1996 Universe: All TURA All Reporting Facilities and Chemicals

Chemical Group: Montreal Protocol

-		4000	
1990	1991		1993
OROMETHANE	(HALON 1211)	CAS Number :	353593
		4 000 000	005 000
			685,000
_	-	=	0
,			
			685,000
		·	8,500
U	1,000,000	1,900,000	875,000
	450	4.000	2 000
			3,000
Ö	. 0	0	0
		-	
0	1	-1	1
		CAS Number :	74839
. 0	0	17,811	17,460
0	0	0	0
18,200	18,200	18,200	42,788
18,200	18,200	36,011	60,248
65,074	18,200	36,000	60,088
0	0	0	0
22,600	18,200	20,950	45,132
0	0	0	0
2,649	0	15,300	14,700
· · · · · · · <u>· · 2</u>	1	2	2
RIDE		CAS Number :	56235
0	0	0	0
. 0	0	14,500	0
0	0	0	0
0	0	14,500	0
0	0	144	0
0	0	13,356	0
0 .	0	144	0
· · · · · · · · · · · · · · · · · · ·	0	0	0
0	0	0	0
0	0	1	0
	1990 OROMETHANE 0 0 0 0 0 0 0 0 0 0 0 0 0 18,200 18,200 18,200 65,074 0 22,600 0 2,649 2 EIDE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	OROMETHANE (HALON 1211) 0	1990 1991 1992 OROMETHANE (HALON 1211) CAS Number : 0 1,800,000 1,900,000 0 0 0 0 0 0 0 1,800,000 1,900,000 0 450 50,000 0 1,800,000 1,900,000 0 450 4,900 0 0 0 0 0 0 0 0 1 1 1 CAS Number : 0 0 0 17,811 0 0 0 0 18,200 18,200 18,200 18,200 18,200 36,011 65,074 18,200 36,000 0 0 0 0 22,600 18,200 20,950 0 0 0 0 2,649 0 15,300 2 1 2 IDE CAS Number : CAS Number : CAS Number :

Special Group Chemical Quantities for 1990-1993 (SOMECHM1.RSL)
Release Date: 1/22/1996 Universe: All TURA All Reporting Facilities and Chemicals

Chemical Group: Montreal Protocol

Cn	•	Montreal Protoco			
	1990	1991	1992	1993	
Chemical: DICHLORODIFLUORON	METHANE		CAS Numb	per: 75718	
TURA Information					,
Manufactured Amount	0	0	0	0	
Processed Amount	0	16,929	32,278	0	
Otherwise Used Amount	0	114,000	94,270	67,584	
Total Use for Chemical	0	130,929	126,548	67,584	
Generated Byproduct Amt	0	114,000	94,270	67,584	
Shippped in/as Prod Amt	0	16,929	32,278	.0	
TRI Information					
Total Emissions :	0	113,900	94,720	67,584	
Discharge to POTW: Transfer Offsite:	0	0	0	0	
Transfer Offsite.	U	U	U	U	
Number of Facilities :	0	3	2	1	
Chemical : FREON113			CAS Number: 76131		
TURA Information		•			
Manufactured Amount	0	0	0	0	
Processed Amount	1,699,165	2,086,999	1,945,736	1,034,142	
Otherwise Used Amount	2,785,500	2,269,965	1,646,816	573,258	
Total Use for Chemical	4,484,665	4,356,964	3,592,552	1,607,400	•
Generated Byproduct Amt	2,610,446	2,510,313	1,831,564	673,194	
Shippped in/as Prod Amt	1,646,734	2,182,204	1,961,668	1,041,284	
TRI Information	.,,.,,	 , · , ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Total Emissions :	2,204,766	1,791,514	1,378,495	440,918	
Discharge to POTW:	10	0	0	0	
Transfer Offsite:	136,234	434,705	347,046	157,089	
Number of Facilities :	78	66	56	29	
Chemical: TRICHLOROETHANEA			CAS Numi	per: 71556	
TURA Information					
Manufactured Amount	0	0	0	0	
Processed Amount	10,452,455	12,072,946	11,980,669	6,936,198	
Otherwise Used Amount	5,769,232	4,231,749	2,911,594	852,502	
Total Use for Chemical	16,221,687	16,304,695	14,892,263	7,788,700	•
Generated Byproduct Amt	5,464,512	5,182,185	3,822,171	1,355,683	
Shippped in/as Prod Amt	10,125,865	11,889,884	11,959,832	12,922,349	
TRI Information					
Total Emissions:	3,815,433	2,925,197	2,036,765	651,363	
Discharge to POTW:	7,691	13,849	7,209	262	
Transfer Offsite:	511,964	1,347,114	948,677	272,200	
Number of Facilities :	148				

Special Group Chemical Quantities for 1990-1993 (SOMECHM1.RSL)

Date: 1/22/1996 Universe: All TURA All Reporting Facilities and Chemicals Release Date: 1/22/1996 Universe: All TURA

Chemical Group: Montreal Protocol

	1990	1991	1992	1993	
Chemical: TRICHLOROMONOFLUOR	OMETHANE		CAS Numb	er: 75694	
TURA Information					
Manufactured Amount	0	0	0	0	
Processed Amount	0	1,149,922	1,848,510	1,192,048	
Otherwise Used Amount	0	23,000	. 0	0.	
Total Use for Chemical	0	1,172,922	1,848,510	1,192,048	
Generated Byproduct Amt	0	83,198	67,441	86,027	
Shippped in/as Prod Amt	0	1,089,723	643,054	0	
TRI Information					
Total Emissions :	0	82,949	64,700	86,386	
Discharge to POTW:	0	0	0	0	
Transfer Offsite:	0	241	2,620	255	
Number of Facilities :	0	5	4	1	
Chemical: TRIFLUOROBROMOMETH	ANE		CAS Numb	er: 75638	
TURA Information				•	
Manufactured Amount	0	0	0	0	
Processed Amount	0	0	252,533	174,506	
Otherwise Used Amount	0	0	0	0	
Total Use for Chemical	0	0	252,533	174,506	
Generated Byproduct Amt	0	0	1,720	880	
Shippped in/as Prod Amt	0	0	250,813	173,626	
TRI Information					
Total Emissions:	0	0	1,720	880	
Discharge to POTW:	0	0	0	0	
Transfer Offsite:	0	, O	0	0	
Number of Facilities :	0	. 0	. 1	1	
	U	U		•	

Special Group Chemical Quantities for 1990-1993 (SOMECHM1.RSL)

Release Date: 1/22/1996 Universe: All TURA All Reporting Facilities and Chemicals

Chemical Group: Montreal Protocol

1990

1991

1992

1993

Grand Total Quantities for All Selected Chemicals

TURA Information	1990	1991	1992	1993
Total Manufactured Amount	0	1,800,000	1,917,811	702,460
Total Processed Amount	12,151,620	15,326,796	16,074,226	9,336,894
Total Otherwise Used Amount	8,572,932	8,572,932	4,670,880	1,536,132
Total Use all Chemicals:	20,724,552	23,783,710	22,662,917	11,575,486
Total Generated Byproduct Amt	8,140,032	7,908,346	5,903,310	2,251,956
Total Shippped in/as Prod Amt	11,772,599	16,978,740	16,761,001	15,012,259
TRI Information				
Total Emissions:	6,042,799	4,932,210	3,602,394	1,295,263
Discharge to POTW Amt:	7,701	13,849	7,209	262
Transfer Offsite Amt:	650,847	1,782,060	1,313,643	444,244
Number of Facilities:	204	180	144	72
Number of Chemicals :	3	6	· 8	7

This appendix includes a sample report of the industry segment analyses. Reports were printed out for 'user segment' groups, with subtotals at the 2-digit SIC code level. For example, the attached facility-wide SIC report is for the 2-digit SIC code '36', Electronic and Other Electric Equipment. The first set of quantities is for 'user segment' group 36, which consists of all facilities which are in the 2-digit SIC but not included in one of the other, more detailed groups following. Those groups following, 3672 and 3674, were separated out in the user segment classification scheme because of the number of firms and similarity of processes and products in each. The final section is the total for the 2-digit level SIC '36'.

This report was run for all user segment groups, both using facility-level and production unit-level SIC codes.

Release Date: 1/22/1996 Universe: All TURA All Reporting Facilities and Chemicals 1990 1991 1992 1993 Electronic & Other Electrical Equipment SIC Group: 36 **TURA Information** Manufactured Amount: 386.070 1.236.206 2.581.083 1.756.343 Processed Amount: 18,180,704 27,426,326 24.875.428 22,027,719 6.948,290 9,397,411 7,232,174 Otherwise Used Amount: 8.075,356 31.016.236 Total Chemical Use 26,642,130 35.610.822 36.853.922 7,308,460 Generated Byproduct Amt: 10,877,877 11,179,556 11.204.038 Shippped in/as Prod Amt: 13,742,209 16,267,762 18.319.633 13.543.889 TRI Information Total Emissions: 3.649,514 3.652.554 2,327,696 1,166,237 Discharge to POTW Amt: 205,536 160,654 168,915 131,137 Transfer Offsite Amt: 1,348,359 4,285,473 3,140,114 4,231,056 Number of Facilities: 64 56 50 40 Number of Chemicals 41 46 46 45 Number of Records 200 185 186 140 SIC Group: 3672 Printed Circuit Boards **TURA Information** Manufactured Amount: 240,450 219,974 40.183 120,797 1,212,916 921,055 Processed Amount: 898.293 969,076 Otherwise Used Amount: 1,446,108 2,112,656 2,091,094 2,025,223 3,523,984 Total Chemical Use 2.963.699 2,535,981 3.274.161 Generated Byproduct Amt: 2.098,927 1,899,926 2,526,192 2,542,065 Shippped in/as Prod Amt: 287,116 365,259 285,213 269,057 TRI Information Total Emissions: 310,548 250,100 294,134 88.999 Discharge to POTW Amt: 75,465 46,150 38,625 46,483 Transfer Offsite Amt: 188.845 691.302 857.372 846,245 Number of Facilities: 18 16 14 14 Number of Chemicals 12 12 12 13 52 67 Number of Records 57 46 SIC Group: 3674 Semiconductors & Related Devices **TURA** Information Manufactured Amount: 0 1,813 621 2,245 Processed Amount: 81,484 77,545 35,867 84.818 Otherwise Used Amount: 2.749.103 4.318.891 4,514,987 2.048.733 Total Chemical Use 4,397,057 4,553,099 2,133,551 2,832,400 Generated Byproduct Amt: 864,033 2,235,742 2,584,438 2,639,351 Shippped in/as Prod Amt: 8.300 9,370 0 0 TRI Information Total Emissions: 240,020 239,269 137,430 101.513 Discharge to POTW Amt: 990 1,007 85 999 Transfer Offsite Amt: 131,020 225,493 239,391 217,170 Number of Facilities: 10 12 11 12 Number of Chemicals 15 19 17 17 42 51 Number of Records 54 46

Page 2

	1990	1991	1992	1993
	Total for SIC	Codes Selected		·—————————————————————————————————————
TURA Information				
Manufactured Amount :	426,253	1,358,816	2,822,154	1,978,562
Processed Amount :	19,163,815	28,476,886	25,874,028	23,276,502
Otherwise Used Amount:	12,149,312	11,143,501	15,828,958	13,838,255
Total Chemical Use	31,739,380	40,979,203	44,525,140	39,093,319
Generated Byproduct Amt:	13,840,837	15,663,920	16,369,581	12,086,267
Shippped in/as Prod Amt :	14,115,768	16,562,345	18,588,690	13,831,005
TRI Information				
Total Emissions:	4,200,082	4,141,923	2,759,260	1,356,749
Discharge to POTW Amt:	281,991	207,811	215,483	170,761
Transfer Offsite Amt:	1,762,697	5,161,749	5,360,015	4,117,379
Number of Facilities:	94	83	76	64
Number of Chemicals:	43	49	49	50
Number of Records:	311	277	289	249

Reporting and Data Management Recommendations

APPENDIX K

Changes in Form S reporting could be made which would both reduce the reporting burden on Massachusetts companies and improve the accuracy of reported information. These changes and improvements include the following:

- Provide for electronic reporting of Form S and Form R, or at a minimum the Form R, since there is already a program available from the EPA to do this. The EPA program would need to be modified to allow entry of non-TRI chemicals. If computerization of the Form S is not possible, a version of the Form S in several standard word processor formats could be made available to reduce the amount of time required to report, since the forms could be filled out and edited on computer rather than by hand.
- Provide facilities with feedback on data reported in prior years to simplify the reporting process and improve the quality of the TURA data. At the beginning of each reporting cycle (approximately January of each year, but by the end of March at the latest), provide each facility that reported in the last year a concise report showing all the major data elements the facility reported for all prior years. A report which listed data elements for all 4 years together was used to review the reporting history of Reality Check facilities. The report made it easy to spot year to year inconsistences and check figures in the DEP database with figures on the original Form S submitted to the state. The TURA program could send TURA filers such a report with advice to check these numbers and correct any errors or inconsistencies. Such a process would improve the accuracy of the TURA database and potentially be a benefit to TUR Planners.
- Include a pre-printed label in the reporting package of all facilities that reported in a prior year including the facility ID, address, and TRI ID or indication that the facility is a state-only filer and request that the facilities use the label to submit the current year's form with corrections to the label as necessary.
- Increase TUR Planner education regarding Form S reporting. Offer more instruction to TUR Planners on the need for accurate data, how to calculate data elements, and the benefits of reviewing data as part of the planning process.
- Eliminate any unnecessary sections of the EPA Form R. For firms with many CERCLA chemicals, the requirement to submit a Form R (CERCLA Chemicals are not required to be reported under EPCRA) significantly increases the amount of paper work since Form Rs are several pages long and have very detailed data elements. If not all the data is being used, it would reduce the reporting burden to have some sections eliminated.

There are also changes which could be made to Form S reporting which would greatly simplify the useability of the data for measuring progress and other types of analysis. These changes include the following:

- For newly reportable chemicals and industries, request estimate of 1987 quantities in order to maintain a 1987 baseline. When a facility reports a chemical for the first time, they should be requested to also submit an estimate of the use and byproduct for the chemical in 1987. This would provide continuing information for maintaining the 1987 baseline.
- Include TRI ID number on Form S and in FMF database, and in the FMF and extract file databases, for facilities that report both federally and under TURA. This will simplify matching TURA filers and TRI filers. For non-TRI TURA facilities include a specific indication that the facility is a state-only filer and include this in the database.
- Include a facility-level SIC code on the Form S or use the facility-level SIC code from the Form R in the database at the facility level. Facilities should be requested to review their facility-wide SIC code for appropriateness and accuracy.
- Clarify instructions for TUR codes and include a TUR code category "unknown reasons for change," Also, clarify instructions to reduce confusion between reporting BRI measured from a base year, but TUR codes if BRI has changed by more than 5 percent from the previous year.
- Require designation of a wastewater treatment production unit when wastewater treatment is responsible for more than 50% of a chemical's use. The SIC code for the unit should be the same as the facility-level SIC or the production units that are the major contributors of waste to the unit.
- Revise optional section for 'reasons that a chemical is not longer reported' so that it is required and so that it is clear whether TUR was responsible for reductions below thresholds. Make section 3 of the Form S coversheet Chemicals that were Previously Reported that are not Reportable This Year a required section and change reason codes for not reporting so that it is clear if the change is due to TUR or other factors.
- Require facilities to provide some data (with no associated fee) for the year in which a facility or chemical drops below the threshold. When a facility no longer reports a chemical because it has dropped below the threshold it would be helpful to have a report on the amount of use and byproduct in the first year not reported. This would allow for a more complete measure of progress or at least an indication (range) of use and byproduct generated.
- Improve metal bender exemption reporting to clarify for which metals an exemption is being requested.